Information Retrieval (5LN712)
Probabilistic Information Retrieval

Ali Basirat

Department of Computer and Information Science (IDA)
Linköping University
ali.basirat@liu.se

Department of Linguistics and Philology
Uppsala University
ali.basirat@lingfil.uu.se

April 20, 2021
Table of contents

1. **Introduction**

2. **Basic Probability Theory**

3. **The Probability Ranking Principle**

4. **The Binary Independence Model (BIM)**

5. **Summary**
• To use probabilistic classifiers to distinguish between relevant and non-relevant documents
• What is the probability of the occurrence of a term in a relevant or non-relevant document
• The Boolean and vector space models do not deal with the uncertainty involved in a query
• The uncertainty about the relevance of a query and a document can be measured by the probability tools
• The probability theory provides a principled foundation for reasoning under uncertainty
1 Introduction

2 Basic Probability Theory

3 The Probability Ranking Principle

4 The Binary Independence Model (BIM)

5 Summary
• A sample space is a set of all possible outcomes of an experiment
• An event is the set of outcomes of an experiment (a subset of a sample space)
• A variable represents an event
• The complement of an event A, denoted by \bar{A}, includes all elements of the sample space that are not in A
• A random variable maps an event to a real number
Example

- Experiment: we roll a dice
- Sample space: the six possible states
- Event A: only one dot is seen
- \bar{A}: two, or, three, ..., or six dots is seen
- The random variable A is the number of dots seen ($A : A = 1$)
The probability of a random variable tells us about the degree of certainty that the corresponding event happen in the real world.

- How probable an event is?
- A probability is a real value between zero and one
- The probability of zero means the event does not happen
- The probability of one means the event happens surly
Example

- We roll a dice. Let A be a random variable that represents the number of dots seen.
- What is the probability of the event A to see only one dot?
Example

- We roll a dice. Let A be a random variable that represents the number of dots seen.
- What is the probability of the event A to see only one dot?
- $P(A) = P(A = 1) = \frac{1}{6}$
Example

- We roll a dice. Let \mathbf{A} be a random variable that represents the number of dots seen.
- What is the probability of the event A to see only one dot?
- $P(A) = P(\mathbf{A} = 1) = \frac{1}{6}$
- What is the probability of \bar{A}?
Example

- We roll a dice. Let A be a random variable that represents the number of dots seen.
- What is the probability of the event A to see only one dot?
- $P(A) = P(A = 1) = \frac{1}{6}$
- What is the probability of \bar{A}?
- $1 - P(A)$
Conditional Probability

We may want to estimate the probabilities based on a subset B of the sample space.

What is the probability of an event A if we know that another event B occurred ($P(A|B)$).

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
Example

- We roll two dices. If the first one shows an odd number. What is the probability that the sum of the two numbers is 6?
- \(S = \{(x, y)|x = 1, \ldots, 6, y = 1, \ldots, 6\} \)
- \(B: \) the first dice shows an odd number
- \(B = \{(1, x), (3, x), (5, x)|x = 1, \ldots, 6\}, P(B) = \frac{18}{36} \)
- \(A: \) the sum of two dices is 6
- \(A = \{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)\}, P(A) = \frac{5}{36} \)
- \(A \cap B = \{(1, 5), (3, 3), (5, 1)\}, P(A \cap B) = \frac{3}{36} \)
- \(P(A|B) = \frac{3}{18} \)
- \(P(B|A) = \frac{3}{5} \)
Joint Events

- Two (or more) events occur together.
- The joint event of the two events A and B is the intersection of the two events $A \cap B$.
- The probability of the joint event $A \cap B$ is represented by $P(A \cap B)$ or $P(A, B)$.
- The joint probability $P(A, B)$ can be calculated by the chain rule:

$$P(A, B) = P(A|B)P(B) = P(B|A)P(A)$$
A set of events A_1, A_2, \ldots, A_n partition a sample space if they are mutually disjoint and their union is the entire sample space.

If A_1, A_2, \ldots, A_n partition a sample space, the probability of an event B in the sample space is:

$$P(B) = P(B, A_1) + \cdots + P(B, A_n) = \sum_{i=1}^{n} P(B, A_i)$$
Example

Any event A in a sample space and its complementary event \bar{A} partition the sample space. Hence, the probability of any event B in the sample space is:

$$P(B) = P(B, A) + P(B, \bar{A}) = P(B|A)P(A) + P(B|\bar{A})P(\bar{A})$$
• General case: If A_1, \ldots, A_n partition the sample space

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^{n} P(B, A_i)}$$

• Special case: If \bar{A} is the complement event of A

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\bar{A})P(\bar{A})}$$
• The probabilities $P(A_i)$ are the prior probabilities.
• The prior probability is an initial estimate of how likely A_i is when we do not have any other information
• The Bayes’ rule tells us how the prior probabilities change if another event B has occurred.
• The posterior probability $P(A_i|B)$ measures the probability of A_i after the evidence B is taken into account.
The odds of an event A is the ratio of the probability of the event to the probability of its complement.

$$O(A) = \frac{P(A)}{P(\bar{A})} = \frac{P(A)}{1 - P(A)}$$

The odds of an event tells us how likely the event will take place.
1 Introduction

2 Basic Probability Theory

3 The Probability Ranking Principle

4 The Binary Independence Model (BIM)

5 Summary
The Probability Ranking Principle

- Documents are ranked based on their relevance probability to a query.
- For each pair of document d and query q, a Bernoulli indicator (random variable) R is defined that takes a value of 1 if d is a relevant document to q.
- The document d_1 is more relevant to the query q than a document d_2 if

$$P(R = 1|d_1, q) > P(R = 1|d_2, q)$$
The 0/1 Loss

- When making a decision about the relevance of documents, no extra cost is considered about possible failures.
- A document is either relevant or not with no decision making cost.
• For each query, the documents are sorted in the descending order of $P(R = 1|d, q)$

• The top k documents with highest relevance probability are shown to the user
• If a set of documents (instead of an ordered list) is going to be returned, then a document d is relevant to a query q if and only if

$$P(R = 1|d, q) > P(R = 0|d, q)$$
To Include Retrieval Costs

- Let C_0 be the cost of retrieval of a non-relevant document (false-positive)
- Let C_1 be the cost of not retrieving a relevant document (false-negative)
- The cost of retrieval of a document is:

$$
C_0 P(R = 0|d) + C_1 (1 - P(R = 1|d))
$$

- The constant C_1 can be eliminated from the cost:

$$
C_0 P(R = 0|d) - C_1 P(R = 1|d)
$$

- Among a set of documents d', the next document to retrieve is one with the minimum retrieval cost.
Table of contents

1. Introduction

2. Basic Probability Theory

3. The Probability Ranking Principle

4. The Binary Independence Model (BIM)

5. Summary
The Binary Independence Model

- Making some assumptions to estimate the probability function $P(R|d, q)$
- We need to know how terms contribute to the relevancy state of a document
- Documents and queries are represented as binary term incidence vectors
- It is assumed that terms occur independently in documents
- Another assumption: the relevance of documents are independent of each other
The Binary Independence Model

- We use Bayes rule to estimate the document relevance probabilities

\[
P(R = 1 | \tilde{x}, \tilde{q}) = \frac{P(\tilde{x} | R = 1, \tilde{q}) P(R = 1 | \tilde{q})}{P(\tilde{x} | \tilde{q})}
\]

\[
P(R = 0 | \tilde{x}, \tilde{q}) = \frac{P(\tilde{x} | R = 0, \tilde{q}) P(R = 0 | \tilde{q})}{P(\tilde{x} | \tilde{q})}
\]
The Binary Independence Model

Interpretations

- $P(\vec{x}|R = 1, q)$: the probability that the vector representation of a document relevant to q is \vec{x}
- $P(\vec{x}|R = 0, \bar{q})$: the probability that the vector representation of a document not relevant to q is \vec{x}
- $P(R = 1|\bar{q})$: the prior probability of retrieving a relevant document
- $P(R = 0|\bar{q})$: the prior probability of retrieving a non-relevant document
The Binary Independence Model

Introductory

Basic Probability Theory

The Probability Ranking Principle

The Binary Independence Model (BIM)

Summary

• Instead of ranking documents based on the relevance probability, we rank them based on their odds of relevance.

• We use odds because it helps eliminating the denominator $P(\bar{x}|\bar{q})$ from the calculations.

$$O(R|\bar{x}, \bar{q}) = \frac{P(R = 1|x, q)}{P(R = 0|x, q)} = \frac{P(\bar{x}|R = 1, \bar{q}) P(R = 1|\bar{q})}{P(\bar{x}|R = 0, \bar{q}) P(R = 0|\bar{q})} = O(R|\bar{q}) \frac{P(\bar{x}|R = 1, \bar{q})}{P(\bar{x}|R = 0, \bar{q})}$$
• Assuming that the occurrences of words in a document are independent of each other:

\[
P(\vec{x}|R = 1, \vec{q}) = \prod_{t=1}^{M} P(x_t|R = 1, \vec{q})
\]

• So, the odd of relevance is:

\[
O(R|\vec{x}, \vec{q}) = O(R|\vec{q}) \prod_{t=1}^{M} \frac{P(x_t|R = 1, \vec{q})}{P(x_t|R = 0, \vec{q})}
\]
The Binary Independence Model

Ranking

- x_t is a Boolean variable that can be either 0 or 1
- Hence, the odd values can be decomposed into:

\[
O(R|\vec{x}, \vec{q}) = O(R|\vec{q}) \prod_{t:x_t=1} \frac{P(x_t = 1|R = 1, \vec{q})}{P(x_t = 1|R = 0, \vec{q})} \prod_{t:x_t=0} \frac{P(x_t = 0|R = 1, \vec{q})}{P(x_t = 0|R = 0, \vec{q})}
\]
The Binary Independence Model

- Let $p_t = P(x_t = 1 | R = 1, \bar{q})$ be the probability of the occurrence of the term x_t in a document relevant to q.
- Let $u_t = P(x_t = 1 | R = 0, \bar{q})$ be the probability of the occurrence of the term x_t in a document non-relevant to q.

<table>
<thead>
<tr>
<th></th>
<th>$R = 1$</th>
<th>$R = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_t = 1$</td>
<td>p_t</td>
<td>u_t</td>
</tr>
<tr>
<td>$x_t = 0$</td>
<td>$1 - p_t$</td>
<td>$1 - u_t$</td>
</tr>
</tbody>
</table>
The Binary Independence Model

We assume that the terms that do not occur in the query are equally likely to be seen in both relevant and non-relevant document (if $q_t = 0$ then $u_t = p_t$).

We only consider terms that appear in the query

$$O(\mathbf{R} | \mathbf{x}, \mathbf{q}) = O(\mathbf{R} | \mathbf{q}) \prod_{t: x_t = q_t = 1} \frac{p_t}{u_t} \prod_{t: x_t = 0, q_t = 1} \frac{1 - p_t}{1 - u_t}$$

The left product is over query terms found in the document.

The right product is over query terms not found in the document.
• If we include the query terms that are found in the document to the right product

\[\prod_{t : x_t = 0, q_t = 1} \frac{1 - p_t}{1 - u_t} \rightarrow \prod_{t : q_t = 1} \frac{1 - p_t}{1 - u_t} \]

• We should simultaneously divide the left product by \(\frac{1 - p_t}{1 - u_t} \) to cancel out the effect of the above modification

\[\prod_{t : x_t = q_t = 1} \frac{p_t}{u_t} \rightarrow \prod_{t : x_t = q_t = 1} \frac{p_t(1 - u_t)}{u_t(1 - p_t)} \]
The Binary Independence Model

The odd of the relevant then will be:

\[O(R|\vec{x}, \vec{q}) = O(R|\vec{q}) \prod_{t:x_t=q_t=1} \frac{p_t(1-u_t)}{u_t(1-p_t)} \prod_{t:q_t=1} \frac{1-p_t}{1-u_t} \]

- The left product is over the query terms found in the document.
- The right product is over all query terms.
- The odd term \(O(R|\vec{q}) \) and the right product are constant for a query.
- They have the same value for all documents when processing a particular query.
The Binary Independence Model

Documents can be ranked for their relevance to a query based on the product:

$$\prod_{t: x_t = q_t = 1} \frac{p_t (1 - u_t)}{u_t (1 - p_t)}$$

Equivalently, we can rank the documents by their retrieval status value (RSV)

$$RSV_d = \log \prod_{t: x_t = q_t = 1} \frac{p_t (1 - u_t)}{u_t (1 - p_t)} = \sum_{t: x_t = q_t = 1} \log \frac{p_t (1 - u_t)}{u_t (1 - p_t)}$$
The logarithm can be decomposed into

\[c_t = \log \frac{p_t(1 - u_t)}{u_t(1 - p_t)} = \log \frac{p_t}{1 - p_t} - \log \frac{u_t}{1 - u_t} \]

- Its first component is the logarithm of the odds of the term appearing in a relevant document
- Its second component is the logarithm of the odds of the term appearing in a non-relevant document
The Binary Independence Model

• c_t is a weight for the term t
• c_t is zero if the term t is equally likely to appear in both relevant and non-relevant documents
• A positive value of c_t indicates that the term is more likely to appear in relevant documents
• A negative value of c_t indicates that the term is more likely to appear in non-relevant documents
• The document score is then the sum of c_t for all document terms matching the query terms
The Binary Independence Model
Probability Estimation

- For a query \(q \), if we have \(S \) relevant documents out of \(N \) documents with the following distribution on the terms:

\[
\begin{array}{c|cc|c}
& R = 1 & R = 0 & \text{total} \\
\hline
x_t = 1 & s & df_t - s & df_t \\
x_t = 0 & S - s & (N - df_t) - (S - s) & N - df_t \\
\hline
\text{total} & S & N - S & N \\
\end{array}
\]

- The probability of seeing the term \(x_t \) in a relevant document is

\[p_t = p(x_t = 1| R = 1, \bar{q}) = \frac{S}{S} \]

- The probability of seeing the term \(x_t \) in a non-relevant document is

\[u_t = p(x_t = 1| R = 0, \bar{q}) = \frac{df_t - s}{N - S} \]
• The term weight c_t is:

\[
 c_t = \log \frac{p_t(1 - u_t)}{u_t(1 - p_t)}
 = \log \frac{s((N - S) - (df_t - s))}{(df_t - s)(S - s)}
 = \log \frac{s/(S - s)}{(df_t - s)/((N - df_t) - (S - s))}
\]
We add a smoothing value to the four terms of c_t to avoid the possibility of zeros

$$
\hat{c}_t = \log \frac{(s + 0.5)/(S - s + 0.5)}{(df_t - s + 0.5)/((N - df_t) - (S - s) + 0.5)}
$$
The Binary Independence Model

Probability Estimation

- The number of relevant documents (S) are often very smaller than the number of non-relevant documents ($N - S$)
- We can estimate the probability u_t from the statistics of the entire collection
 \[u_t = \frac{df_t}{N} \]
- The inverse of the odds of u_t can then be approximated by the idf of the term t
 \[\log \frac{1 - u_t}{u_t} = \log \frac{N - df_t}{df_t} \approx \log \frac{N}{df_t} \]
- This cannot be easily extended to relevant document
The probabilities p_t and u_t can be estimated in an iterative process of pseudo relevance feedback

1. Guess initial estimates of p_t and u_t (e.g., $p_t = 0.5$).
2. Retrieve a set of candidate documents based on the current estimates of p_t and u_t.
3. Ask the user to judge the retrieved documents.
4. Re-estimate p_t and u_t based on the user judgements.
5. Repeat the process from Step 2 until the user is satisfied.
Table of contents

1. Introduction
2. Basic Probability Theory
3. The Probability Ranking Principle
4. The Binary Independence Model (BIM)
5. Summary
Summary

- How to rank documents based on their probability of relevance
- The binary Independence model for relevance probability
- How to estimate the probabilities
- The probability estimation in an iterative relevance feedback procedure
Manning, Christopher D. and Raghavan, Prabhakar and Schütze, Hinrich.

Introduction to Information Retrieval.