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Abstract. We present a new fully unsupervised human-intervention-
free algorithm for stemming for an open class of languages. Since it does
not rely on existing large data collections or other linguistic resources
than raw text it is especially attractive for low-density languages. The
stemming problem is formulated as a decision whether two given words
are variants of the same stem and requires that, if so, there is a con-
catenative relation between the two. The underlying theory makes no
assumptions on whether the language uses a lot of morphology or not,
whether it is prefixing or suffixing, or whether affixes are long or short.
It does however make the assumption that 1. salient affixes have to be
frequent, 2. words essentially are variable length sequences of random
characters, and furthermore 3. that a heuristic on what constitutes a
systematic affix alteration is valid. Tested on four typologically distant
languages, the stemmer shows very promising results in an evaluation
against a human-made gold standard.

1 Introduction

The problem at hand can be described as follows:

Input : An unlabeled corpus of an arbitrary natural language and two arbitrary
words w1, w2 from that language

Output : A YES/NO answer as to whether w1 and w2 are morphological vari-
ants of one and the same stem (according to traditional linguistic analysis).

Restrictions : We consider only concatenative morphology and assume that
the corpus comes already segmented on the word level.

The relevance of the problem is that of stemming as applied in Informa-
tion Retrieval (IR). The issues of stemming in IR has been discussed at length
elsewhere and need not be repeated here. It suffices to say that, though not
uncontroversial, stemming continues to be a feature of modern IR systems for
languages like English (e.g Google1), and is likely to be of crucial importance
for languages which make more use of morphology (cf. [1]).

The reasons for attacking the problem in an unsupervised manner include
advantages in elegance, economy of time and money (no annotated resources
required), and the fact that the same technology may be used on new languages.

1 According to http://www.google.com/help/basics.html accessed 20 March 2006.
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The latter two reasons are especially important in the context of resource-scarce
languages.

Our proposed unsupervised same-stem decision algorithm proceeds in two
phases. In the first phase, a ranked list of salient affixes are extracted from an
unlabeled text corpus of a language. In the second phase, an input word pair is
aligned to shortlist affixes that could potentially be added to a common stem
to alternate between the two. Crucially, this shortlist of affix alternations is
analyzed to check whether they form a systematic alternation in the language
as a whole (i.e not just in the pair at hand). This analysis depends strongly on
the ranked affix list from the first phase.

An outline of the paper is as follows: we start with some notation and basic
definitions, with which we describe the theory that is intended to model the
assumed behaviour of affixation in natural languages. Then we describe in de-
tail and with examples the thinking behind the affix extraction phase, which
actually requires only a few lines to define mathematically. Following that, we
present our ideas on how to distinguish a systematic morphological alternation
from a spurious one. This part is the more experimental one but at least it re-
quires no guiding, tuning or annotation whatsoever. The algorithm is evaluated
against a human gold standard on four languages chosen to span the full width
of morphological typology. Finally, we briefly discuss related work, draw some
tentative conclusions and hint at future directions.

2 Affix Extraction

We have chosen to illustrate using suffixes but the method readily generalizes to
prefixes as well (and even prefixes and suffixes at the same time).

2.1 A Naive Theory of Affixation

Notation and definitions:

– w, s, b, x, y, . . . ∈ Σ∗: lowercase-letter variables range over strings of some
alphabet Σ and are variously called words, segments, strings, etc.

– s�w: s is a terminal segment of the word w i.e there exists a (possibly empty)
string x such that w = xs

– W, S, . . . ⊆ Σ∗: capital-letter variables range over sets of words/strings/
segments

– fW (s) = |{w ∈ W |s � w}|: the (suffix) frequency, i.e the number of words in
W with terminal segment s

– SW = {s|s � w ∈ W}: all terminal segments of the words in W
– ufW (u) = |{(x, y)|xuy = w ∈ W}|: the substring frequency of u, i.e the

number times u occurs as a substring in the set of words W (x and y may
be empty).

– nfW (u) = ufW (u) − fW (u): the non-final frequency of u, i.e. the substring
frequency minus those in which it occurs as a suffix.

– | · |: is overloaded to denote both the length of a string and the cardinality
of a set
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Assume we have two sets of random strings over some alphabet Σ:

– Bases B = {b1, b2, . . . , bm}
– Suffixes S = {s1, s2, . . . , sn}

Such that:

Arbitrary Character Assumption (ACA): Each character c ∈ Σ should
be equally likely in any word-position for any member of B or S.

Note that B and S need not be of the same cardinality and that any string,
including the empty string, could end up belonging to both B and S. They need
neither to be sampled from the same distribution; pace the requirement, the
distributions from which B and S are drawn may differ in how much probability
mass is given to strings of different lengths. For instance, it would not be violation
if B were drawn from a a distribution favouring strings of length, say, 42 and S
from a distribution with a strong bias for short strings.

Next, build a set of affixed words W ⊆ {bs|b ∈ B, s ∈ S}, that is, a large set
whose members are concatenations of the form bs for b ∈ B, s ∈ S, such that:

Frequent Flyer Assumption (FFA): The members of S are frequent. For-
mally: Given any s ∈ S: fW (s) >> fW (x) for all x such that 1. |x| = |s|;
and 2. not x � s′ for all s′ ∈ S).

In other words, if we call s ∈ S a true suffix and we call x an arbitrary segment if it
neither a true suffix nor the terminal segment of a true suffix, then any true suffix
should have much higher frequency than an arbitrary segment of the same length.

2.2 An Algorithm for Affix Extraction

The key question is, if words in natural languages are constructed as W explained
above, can we recover the segmentation? That is, can we find B and S, given
only W? The answer is yes, we can partially decide this. To be more specific,
we can compute a score ZW such that ZW (x) > ZW (y) if x ∈ S and y /∈ S. In
general, the converse need not hold, i.e if both x, y ∈ S, or both x, y /∈ S, then
it may still be that ZW (x) > ZW (y). This is equivalent to constructing a ranked
list of all possible segments, where the true members of S appear at the top, and
somewhere down the list the junk, i.e non-members of S, start appearing and fill
up the rest of the list. Thus, it is not said where on the list the true-affixes/junk
border begins, just that there is a consistent such border. We shall now define
three properties that we argue will be enough to put the S-belonging affixes at
the top of the list. For a terminal segment s, define:

Frequency. The frequency fW (s) of s (as a terminal segment).
Curve Drop. The Curve Drop of s is the minimal percentage drop in freqency

if s is extended to the left with one character, normalized to the best possible
such precentage drop.

C(s) =
1 − maxc

fW (cs)
fW (s)

1 − 1
|Σ|

(1)



326 H. Hammarström

Random Adjustment. First, for s, define its probability as:

PW (s) =
fW (s)

∑
s′∈SW

fW (s′)
(2)

Second, equally straighfowardly, for an arbitrary segment u, define its non-
final probability as:

nPW (u) =
nfW (u)

∑
u′ nfW (u′)

(3)

Finally, for a terminal segment s, define its random adjustment RA(s) to be
the ratio between the two:

RA(s) =

{
PW (s)

nPW (s) if nPW (s) > 0
1.0 otherwise

(4)

It is appropriate now to show the intuition behind the definitions. There
isn’t much to comment on frequency, so we’ll go to curve drop and random
adjustment. All examples in this section come from the Brown corpus [2] of one
million tokens (|W | = 47178 and |SW | = 154407).

The curve drop measure is meant to predict when a suffix is well-segmented
to the left. Consider a suffix s, in all the words on which it appears, there is
a preceding character c. For example, -ing occurs 3258 times, of which it is
preceded by t 640 times, of l 329 times, r 317 times, d 258 times, n 249 times
and so forth. This contrasts with -ng which occurs 3352 times, of which it is
preceded by i 3258 times, by o 35 times, by a 26 times and so on. The reasoning
is thus as follows. If s is a true suffix and is well-segmented to the left, then
its curve-drop value should be high. Frequent true suffixes that attach to bases
whose last character is random should have a close to uniform curve. On the
other hand, if the curve drop value is low it means there is a character that
suspiciously often precedes s. However, if s weren’t a true suffix to begin with,
perhaps just a frequent but random character, then we expect it’s curve drop
value to be high too! To exemplify this, we have C(ing) ≈ 0.833, C(ng) ≈ 0.029
and C(a) ≈ 0.851.

The random adjustment measure it precisely to distinguish what a “frequent
but random segment” is, that is, discriminate e.g -a versus -ing as well as -a
versus -ng. Now, how does one know whether something is random or not? One
approach would be to say the shorter the segment the more random. Although
it’s possible to get this to work reasonably well in practice, it has some draw-
backs. First, it treats all segments of the same length the same, which may be too
brutal, e.g should -s be penalized as much as -a? Second, it might be considered
too vulnerable to orthography. For example if a language has an odd trigraph
for some phoneme, we are clearly going to introduce an error source. Instead
we propose that a segment is random iff it has similar probability in any posi-
tion of the word. Instead we propose that a segment is random iff it has similar
probability in any position of the word. This avoids the “flat length”-problems
but has others, which we think are less harmful. First, we might get sparse data
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which can either be back-off smoothed or, like here, effectively ignored (where
we lack occurence we set the RA to 1.0). Second, phonotactic or orthographic
constraints may cause curiousities, e.g. English y is often spelled i when medial
as in fly vs. flies.

To put it all together, we propose the characterization of suffixes in terms of
the three properties as shown in table 1. The terms high and low are of course
idealized, as they are really gradient properties.

Table 1. The logically possible condigurations of the three suffix properties, accom-
panied by an appropriate linguistically inspired label and an example from English

fW C RA Example Label
high high high -ing True suffix
high high low -a Frequent random segment
high low high -ng Tail of true suffix
high low low N/A Second part of a digraph
low high high -oholic Infrequent true suffix
low high low -we Happenstance low RA-segment?
low low high -icz Tail of foreign personal name ending
low low low -ebukadnessar Infrequent segment

As seen from the table, we hold that true suffixes (and only true suffixes) are
those which have a high value for all three properties. Therefore, we define our
final ranking score, the ZW : SW → Q:

ZW (s) = C(s) · RA(s) · fW (s) (5)

The final ZW -score in equation 5 is the one that purports to have the property
that ZW (x) > ZW (y) if x ∈ SW and y /∈ SW – at least if purged (see below). We
cannot give a formal proof that languages satisfying ACA and FFA should get a
faultless ranking list because this is true only in a heuristic sense. To set bounds
on the probability for it to hold is also depends on a lot of factors that are hard,
or at least inelegant, to characterize. We hope, however, to have sketched the
how the ACA and FFA assumptions are used.

2.3 Affix Extraction Sample Results

On the affix extraction part as such, we will only give some impressionistic
results rather than a full-scale evaluation. The reason for this is that, although
undoubtedly the list has some valid meaning, it is at present unclear to the author
what a gold standard should be in every detail in every language. Furthermore,
different applications, such as the final objective in this paper, may not require
that a context-less choice between two related affixes, e.g -ation and -tion, be
asserted.

For an English bible corpus [3] we get the top 30 plus bottom 3 suffixes as
shown in table 2.
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Table 2. Top 30 and bottom 3 extracted suffixes for an English bible corpus. The high
placement of English -eth and -iah are due to the fact that the bible version used has
drinketh, sitteth etc and a lot of personal names in -iah.

-ed 15448.4 -ity 6917.6 -ts 3783.1 -y 2239.2 -ded 1582.2
-eth 12797.1 -edst 6844.7 -ah 3766.9 -leth 2166.3 -neth 1540.0
-ted 11899.4 -ites 5370.2 -ness 3679.3 -nts 2122.6 . . . . . .
-iah 11587.5 -seth 5081.6 -s 3407.3 -ied 1941.7 . . . . . .
-ly 10571.2 -ned 4826.7 -ions 2684.5 -ened 1834.9 -io 0.0

-ings 8038.9 -s’ 4305.2 -est 2452.6 -ers 1819.5 -ti 0.0
-ing 7292.8 -nded 3833.8 -sed 2313.7 -ered 1796.7 -ig 0.0

The results largely speak for themselves but some comments are in order. A
good sign is that the list and its order seems to be largely independent of corpus
size (as long as the corpus is not extremely small) but we do get some significant
differences between bible English and newspaper English. As is easily seen from
the lists, some suffixes are suffixes of each other so one could purge the list in
some way to get only the most “competitive” suffixes. For a fuller discussion of
purging, other languages and all other matters pertaining to the affix extraction
algorithm, the reader is referred to the longer exposition in [4].

3 Affix Alternation Analysis

Having a list of salient affixes is not sufficient to parse a given word into stem
and affix(es). For example, sing happens to end in the most salient suffix yet
it is not composed of s and ing because crucially, there is no *s, *sed etc.
Thus to parse a given word we have to look at additional evidence beyond the
word itself, such as the existence of other inflections of potentially the same
stem as the given word, or further, look at inflections of other stems which
potentially share an affix with the given word. This line of thought will be
pursued below.

The problem at hand, namely, to decide if two given words w1, w2 share a
common stem (in the linguistic sense) is easier than parsing one word. Essentially,
there are four interesting kinds of situations the same-stem-decider must face:

1. w1 and w2 do share the same stem and have a salient affix each, e.g played
vs. playing.

2. w1 and w2 do share the same stem but one of them has the “zero” affix, e.g
play vs. playing.

3. w1 and w2 do not share the same stem (linguistically) but do share some
initial segment, e.g playing vs. plough.

4. w1 and w2 do not share the same stem (linguistically) and do not share any
initial segment, e.g playing vs. song.

Number 4 is trivial to decide in the negative. Number 1 is also easy to affirm
using a list of salient affixes, whereas the special case of number 2 requires some
care. The real difficulty lies in predicting a negative answer for case number 3
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(while, of course, at the same time predicting a positive for cases 1 and 2). We
will go for an extended discussion of this matter below.

Consider two words w1 = xs1 and w2 = xs2 that share some non-empty
initial segment x. Except for chance resemblances, which by definition are rare,
we would like to say that w1 and w2 belong to the same stem iff:

1. s1 and s2 are well-segmented salient suffixes in the language, i.e -w and -lt
for saw and salt are not; and

2. s2 and s2 must systematically contrast in the language, that is, there must
be a large set of stems which can take both s1 and s2. For example, the word
pair sting and station align to -ing and -ation which are both salient suffixes
but they do not systematically contrast.

The key difficulty is to decide, in an unsupervised manner, when something is
systematic and when it isn’t. In order to tackle this, we will propose a heuristic
for measuring how much two suffixes contrast. This will give a score between 0
and 1 where it is not clear at which value “systematic” begins. We could say
that, at this point, the user has to supply a threshold value. However, instead,
we devise another heuristic that obviates the need for a threshold at all. The
resulting system thus supplies a YES/NO answer to the same-stem decising
problem without any human interaction.

3.1 Formalizing Same Stem Co-occurence

From the word distributions characteristic of natural language corpora, it is
surprisingly difficult to come up with a measure of how much a set of suffixes
show up on the “same stems” that is not such that it favours the inclusion of any
simply frequent, rather than truly contrasting, terminal segment. For example,
the author has not had much success with standard vector similarity measures.
Instead, we propose the following usage of co-occurence statistics. The measure
presented is valid for an arbritrary set of suffixes (called P for “paradigm”) even
though the relevance in this paper is for the case where |P | = 2.

First, for each suffix x, define its quotient function Hx(y) : SW → [0, 1] as:

Hx(y) =
|Stems(x) ∩ Stems(y)}|

|Stems(x)| (6)

where Stems(x) = {z|zx ∈ W}. The formula is conveying the following: We are
given a suffix x, and we want to construct a quotient function which is a function
from any other suffix to a score between 0 and 1. The score is calculated as: look
at all the stems of x, other suffixes y will undoubtedly also occur on some of these
stems. For each other suffix y, find the proportion of x:s stems on which y also
appears. This proportion will be the quotient associated with y. Two examples
of quotient functions (sorted on highest value) are given in table 3.

Now, given a set of affixes P , construct a rank by summing the quotient
functions of the members of P :

VP (y) =
∑

x�=y∈P

Hx(y) (7)
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Table 3. Sample quotient functions/lists
for ing and ed on the Brown Corpus. Hing

and Hed have 68337 and 75853 nonzero
values respectively.

y Hing(y) y Hed(y)
ing 1.00 ed 1.00
ed 0.59 ing 0.42
′′ 0.41 ′′ 0.33
s 0.25 e 0.21
e 0.24 s 0.20
es 0.19 es 0.17
er 0.12 er 0.08
ers 0.10 ion 0.07
ion 0.07 ers 0.05
y 0.05 y 0.04
ings 0.05 ions 0.03
ions 0.03 ation 0.03
in 0.03 able 0.02
ation 0.03 ings 0.02
′s 0.03 ′s 0.02
ingly 0.03 or 0.02
or 0.02 in 0.01
able 0.02 ly 0.01
ive 0.02 ive 0.01
ors 0.02 ingly 0.01
ations 0.01 al 0.01
er′s 0.01 ment 0.01
ment 0.01 ors 0.01
ly 0.01 ations 0.01
. . . . . . . . . . . .

Table 4. Example ranks for P =
{a, an, as, ans, or, orna, ors, ornas} (left)
and P = {ungen, ig, ar, ts, s, de, ende, er}
(right)

y V IP (y) y V IP (y)
a 3.93 ” 3.32
an 2.82 t 1.48
or 2.71 a 1.19
” 1.91 r 1.18
orna 1.76 s 1.15
ar 1.13 en 1.14
as 1.06 iga 0.86
ade 1.05 d 0.80
ans 0.94 igt 0.73
at 0.89 as 0.66
en 0.82 de 0.59
s 0.76 des 0.57
t 0.73 ade 0.55
e 0.71 ung 0.49
er 0.66 er 0.49
ad 0.61 at 0.48
ande 0.52 n 0.46
ades 0.47 ar 0.45
ats 0.40 an 0.44
i 0.36 e 0.42
. . . . . . . . . . . .
ors 0.35
. . . . . .
ornas 0.27
. . . . . .

The x �= y is just there so that the y:s that are also in P do not get an “extra”
1.0, since Hx(x) = 1.0 regardless of the data. The rank is just y sorted on highest
VP (y).

As an example, take W from the Swedish PAROLE-Corpus [5]. We can com-
pare in table 4 the very common paradigm {a, an, as, ans, or, orna, ors, ornas}
with the nonsense paradigm {ungen, ig, ar, ts, s, de, ende, er} consisting only of
individually frequent suffixes. In table 4, the ranks of the member of P to the
left are [0, 1, 2, 4, 6, 8, 22, 31], and for P to the right the ranks are [115044, 127,
17, 28, 4, 10, 100236, 14].

Now, if we can generalize from these cases it seems that we can rank different
hypotheses of paradigms (of the same size) by looking at their quotient ranks. If
the members of P “turn up high in” the quotient rank then the members of P
tend to turn up on the same stems. There are several issues in formalizing the
notion of “turn up high in”. The places in the ranked list alone? Also incorporate
the scores? Average place or total sum of places? For now we will just do a simple
sum of places in the ranked list, divide by the optimum sum (which depends on
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|P | and is 0 + . . . + |P | − 1), and take the inverse. This gives a score between 0
and 1 where a high score means the members of P tend to appear on the same
stems:

V I(P ) =
|P |(|P | − 1)

2
∑

x∈P place(x, VP )
(8)

According to the desiderata 1 and 2 in section 3 (p. 329) we finally define an
affix-systematicity likelihood score as:

A(P ) = V I(P )
∑

s∈P

ZW (s) (9)

As a convention we set ZW (′′) = 0.

3.2 Escaping Thresholds

The V I-score from the last section may be used for a greedy hill-climbing search
through the affix set space. For example, we may start with an affix, a one
member set, and see whether we can improve the affix score by including an-
other member, and perhaps another after that until we can’t improve the score
anymore. In this process, we may also entertain the possibility of kicking some
member out if that improves the score – as long as there is no backtracking the
search remains polynomial. Formally, define the growing function of a set P of
affixes as:

G(P ) = argmaxp∈{P}∪{P xor s|s∈SW }V I(p) (10)

G∗(P ) =
{

P if G(P ) = P
G∗(G(P )) if G(P ) �= P

(11)

Two growth-examples are shown in table 5, one which attains a perfect 1.0
score and one in which the original member is expelled in a later iteration.

Table 5. Example iterations of G∗(′ation′) and G∗(′xt′)

P V I(P )
{’ation’} 0.00
{’ated’, ’ation’} 0.14
{’ate’, ’ated’, ’ation’} 0.40
{’ate’, ’ated’, ’ating’, ’ation’} 0.75
{’ate’, ’ated’, ’ating’, ’ation’, ’ations’} 1.00

P V I(P )
{’xt’} 0.00
{’xt’, ’n’} 0.04
{’xt’, ’n’, ’ns’} 0.12
{’n’, ’ns’} 0.55
. . . . . .

Now, how does this help us work around a threshold for deciding how sys-
tematically a pair of suffixes have to co-occur to conflate their stems? Recall the
writing convention w1 = xs1 and w2 = xs2. Instead of having a threshold we
may conjecture that:

w1, w2 have the same stem iff s1 ∈ G∗(s2) and s2 ∈ G∗(s1)
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For example, this predicts that sting and station are not the same stem because
neither G∗(ing) = {′′, e, ed, er, es, ing, s} contains ’ation’ nor does G∗(ation) =
{ate, ated, ating, ation, ations} contain ’ing’. From our experience this test is
quite powerful. However, there are of course cases where it predicts wrongly,
due to the greedy nature of the G∗-calculation, e.g G∗(ing) does not contain
’ers’. Moreover, if one of the affixes is the empty affix, we need a special fix (see
below).

3.3 Same-Stem Decision Algorithm

We can now put all pieces together to define the full algorithm as shown in
table 6.

Table 6. Summary of same-stem decision algorithm

Input: A text corpus C and two words w1, w2

Step 1. Calculate ZW as in equation 5
Step 2. Form the set of candidate alignment pairs as:

C(w1, w2) = {(s1, s2)|xs1 = w1 and xs2 = w2} (12)

Step 3. If C(w1, w2) is empty then answer NO, otherwise pick the best candidate pair
as:

argmax(s1,s2)∈C(w1,w2)A({s1, s2}) (13)

Step 4. For the winning pair, answer YES/NO acccordingly as s1 ∈ G∗(s2) and s2 ∈
G∗(s1)

If one of s1, s2 is the empty string then step 3 and 4 should be restated as
follows (using s to denote the non-empty one of the two). The maximization
value in step 3 should be modified to: ZW (s)

1+place(′′,Hs) . Step 4 should be modified
to: answer YES/NO acccordingly as ′′ ∈ G∗(s).

The bad news is that the computation of the G∗:s tends to be slow due to
the summing and sorting of typically very long (50 000-ish items) lists. On my
standard PC with a Python implementation it typically takes 30 seconds to
decide whether two words share the same stem.

4 Evaluation

Several authors, e.g [6,7], have evaluated their stemming algorithms on Informa-
tion Retrieval performance. While IR is the undoubtedly the major application
area we feel that evaluating on retrieval performance does not answer all relevant
questions of stemming performance. For instance, a stemmer may make confla-
tions and miss conflations that simply did not affect the test queries. In fact,
one may get different best stemmers depending on the test collection. There is
also difference as to whether the whole document collection, an abstract of each
document or just the query is stemmed.
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We find it more instructive to test stemming separately against a stemming
gold standard and assess the relevance of stemming for IR by testing the stem-
ming gold standard on IR performance. If stemming turns out to be relevant for
IR, then researchers should continue to develop stemming algorithms towards
the gold standard. In the other case, one wonder whether IR-improving term
conflation methods should be called stemmers.

In order to assess the cross-linguistic applicability of our stemming algorithm
we have chosen languages spanning spectrum of morphological typology – from
isolating to highly suffixing – Maori, English, Swedish and Kuku Yalanji [8]. As
training data we used only the set of words from a bible translation to emphasize
the applicability to resource-scarce languages.

For these four languages we devised a stemming gold standard using [12,13]
for Maori and [14,15] for Kuku Yalanji, languages not generally known to the
author. So as not to let the test set be dominated by too many simple test cases,
the selection of test set cases was done as follows:

1. Select a random word w1 from W for the corresponding language
2. Select a random number i in 0 ≤ i ≤ |w1| − 1
3. Select a random word w2 from the subset of words from W \ {w1} sharing i

initial characters with w1
4. Mark the pair w1, w2 to be of the same stem or not, according to traditional

linguistic analysis

This was repeated until 200 pairs of words for each language had been selected,
100 same-stem and 100 not same-stem. Except for Maori where we could only
really find 13 same-stem cases this way, all involving active-passive alternating
verbs (described in detail in [16]).

Table 7. Evaluation results

Same-stem Diff.-stem
Language Correct Total Correct Total Language Type Corpus Size
Maori 10 13 100 100 Isolating [9] NT & OT
English 97 100 100 100 Mildly Suffixing [3] NT & OT
Swedish 96 100 100 100 Suffixing [10] NT & OT
Kuku Yalanji 94 100 100 100 Strongly Suffixing [11] NT & OT Parts

The evaluation results are shown in table 7. Errors fall into just one major
type, in which the algorithm is too cautious to conflate; it is when two words
do share the stem but where one of the suffixes is rather uncommon (possibly
because it is really composite) and therefore it is not in the grow-set of the other
suffix; for example Swedish skap-ade-s (past passive) and skap-are-n-s (agent-
noun definite genitive). We also expected false positives in the form of random
resemblances involing short words and short affixes; e.g as versus a but no such
cases seem to have occurred in the test set in any of the languages.

We have done attempted a comparison with other existing stemmers, mainly
because they tend not be aimed at an open set of languages and those which are,
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are really not fully supervised and we fear we might not do justice to them in
setting parametres (see Related Work section). The widely known Porter stem-
mer [17] for English scores exactly the same result for English as our stemmer,
which suggests than an unsupervised approach may come very close to explicitly
human-informed stemmers. Many other stemmers, however, are superior to ours
in the sense that they can stem a single word correctly whereas ours requires a
pair of words to make a decision. This is especially relevant when large bodies of
data needs to be stem-indexed as it would take quadratic time (in the number
of words) in our setting.

5 Related Work

A full survey of stemming algorithms for specific languages or languages like
English has more or less fully been done elsewhere (the technology becoming
relatively mature cf. [18,19,6,7,20,21,22,23] and references therein). We will focus
instead on unsupervised approaches for a wider class of languages.

Melucci and Orio [7] present a very elegant unsupervised stemming model.
While training does not require any manually annotated data, some architectural
choices depending on the language still has to be supplied by a human. If this
can be overcome in an easy way, it would be very interesting to test their Baum-
Welch training approach versus the explicit heuristics in this paper, especially on
a wider scope of languages than given in their paper. The unsupervised stemmer
outlined in [6] actually requires a lot of parametres to be tweaked humanly and
mainly targets languages with one-slot morphology.

Other systems for unsupervised learning of morphology which do not explic-
itly do stemming could easily be transformed into stemmers. Work includes
[24,25,26,27,28,29,30,31,32,33,34,35,36,37] and other articles by the same au-
thors. All of these systems, however, require some parametre tweaking as it
is and perhaps one more if transformed to stemmers, so there is still work want-
ing before they can be compared on equal grounds to the stemmer described
here. Given that they use essentially the same kind of evidence, it is likely that
some of them, especially [38], will reach just as competitive results on the same
task.

Of course, we also wish to acknowledge that traditional stemmers output the
actual stem, which is one (significant) step further than deciding the same-stem
problem for word pairs.

6 Conclusion

We have presented a fully unsupervised human-intervention-free algorithm for
stemming for an open class of languages showing very promising accuracy results.
Since it does not rely on existing large data collections or other linguistic resources
than raw text it is especially attractive for low-density languages. Although poly-
nomial in time, it appears rather slow in practice and may not be suitable for stem-
ming huge text collections. Future directions include investigating whether there
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is a speedier shortcut and a better, more systematic, approach to layered morphol-
ogy i.e for languages which allow affixes to be stacked.
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18. Erjavec, T., Džeroski, S.: Machine learning of morphosyntactic structure: Lemma-

tizing slovene words. Applied Artificial Intelligence 18 (2004) 17–41
19. Frakes, W.B., Fox, C.J.: Strength and similarity of affix removal stemming algo-

rithms. SIGIR Forum 37(1) (2003) 26–30
20. Rogati, M., McCarley, S., Yang, Y.: Unsupervised learning of arabic stemming

using a parallel corpus. In: ACL ’03: Proceedings of the 41st Annual Meeting on
Association for Computational Linguistics, Morristown, NJ, USA, Association for
Computational Linguistics (2003) 391–398

21. Hull, D.A.: Stemming algorithms: A case study for detailed evaluation. Journal of
the American Soicety for Information Science 47(1) (1996) 70–84

22. Galambos, L.: Multilingual Stemmer in Web Environment. PhD thesis, Faculty of
Mathematics and Physics, Charles University in Prague (2004)

23. Flenner, G.: Ein quantitatives morphsegmentierungssystem für spanische wortfor-
men. In Klenk, U., ed.: Computatio Linguae II: Aufsätze zur algorithmischen und
Quantitativen Analyse der Sprache. Volume 83 of Zeitschrift für Dialektologie und
Linguistik: Beihefte. Franz Steiner, Stuttgart (1994) 31–62

24. Jacquemin, C.: Guessing morphology from terms and corpora. In: Proceedings,
20th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’97), Philadelphia, PA. (1997)

25. Yarowsky, D., Wicentowski, R.: Minimally supervised morphological analysis by
multimodal alignment. In: Proceedings of the 38th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL-2000). (2000) 207–216

26. Baroni, M., Matiasek, J., Trost, H.: Unsupervised discovery of morphologically
related words based on orthographic and semantic similarity. In: Proceedings of
the Workshop on Morphological and Phonological Learning of ACL/SIGPHON-
2002. (2002) 48–57

27. Clark, A.: Learning morphology with pair hidden markov models. In: ACL (Com-
panion Volume). (2001) 55–60
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