
Natural Language Engineering 13 (2): 95–135. c© 2007 Cambridge University Press

doi:10.1017/S1351324906004505 First published online 12 January 2007 Printed in the United Kingdom
95

MaltParser: A language-independent system

for data-driven dependency parsing

J O A K I M N I V R E
Växjö University, School of Mathematics and Systems Engineering, 35195 Växjö, Sweden

Uppsala University, Department of Linguistics and Philology, Box 635, 75126 Uppsala, Sweden

e-mail: joakim.nivre@msi.vxu.se

J O H A N H A L L, J E N S N I L S S O N
Växjö University, School of Mathematics and Systems Engineering, 35195 Växjö, Sweden

e-mail: {johan.hall,jens.nilsson}@msi.vxu.se

A T A N A S C H A N E V
University of Trento, Dept. of Cognitive Sciences, 38068 Rovereto, Italy

ITC-irst, 38055 Povo-Trento, Italy

e-mail: chanev@form.unitn.it

G Ü L Ş E N E R Y İ Ǧ İ T
Istanbul Technical University, Dept. of Computer Engineering, 34469 Istanbul, Turkey

e-mail: gulsen.cebiroglu@itu.edu.tr

S A N D R A K Ü B L E R
University of Tübingen, Seminar für Sprachwissenschaft, Wilhelmstr. 19, 72074 Tübingen, Germany

e-mail: kuebler@sfs.uni-tuebingen.de

S V E T O S L A V M A R I N O V
University of Skövde, School of Humanities and Informatics, Box 408, 54128 Skövde, Sweden

Göteborg University & GSLT, Faculty of Arts, Box 200, 40530 Göteborg, Sweden

e-mail: svetoslav.marinov@his.se

E R W I N M A R S I
Tilburg University, Communication and Cognition, Box 90153, 5000 LE Tilburg, The Netherlands

e-mail: e.c.marsi@uvt.nl

(Received 16 February 2006; revised 15 August 2006)

Abstract

Parsing unrestricted text is useful for many language technology applications but requires

parsing methods that are both robust and efficient. MaltParser is a language-independent sys-

tem for data-driven dependency parsing that can be used to induce a parser for a new language

from a treebank sample in a simple yet flexible manner. Experimental evaluation confirms that

MaltParser can achieve robust, efficient and accurate parsing for a wide range of languages

without language-specific enhancements and with rather limited amounts of training data.

1 Introduction

One of the potential advantages of data-driven approaches to natural language

processing is that they can be ported to new languages, provided that the necessary

96 J. Nivre et al.

linguistic data resources are available. In practice, this advantage can be hard to

realize if models are overfitted to a particular language or linguistic annotation

scheme. Thus, several studies have reported a substantial increase in error rate

when applying state-of-the-art statistical parsers developed for English to other

languages, such as Czech (Collins et al. 1999), Chinese (Bikel and Chiang 2000;

Levy and Manning 2003), German (Dubey and Keller 2003), and Italian (Corazza

et al. 2004). Another potential obstacle to successful reuse is that data-driven models

may require large amounts of annotated training data to give good performance,

while for most languages the availability of such resources is relatively limited. This

is also a problem when porting parsers to new domains, even for languages where

large amounts of annotated data are available (Titov and Henderson 2006). Given

that approaches based on completely unsupervised learning are still vastly inferior

in terms of accuracy, there is consequently a need for supervised approaches that

are resilient against data sparseness.

In this article, we present a data-driven approach to dependency parsing that has

been applied to a range of different languages, consistently giving a dependency

accuracy in the range 80–90%, usually with less than a 5% increase in error rate

compared to state-of-the-art parsers for the language in question. All these results

have been obtained without any language-specific enhancements and in most cases

with fairly modest data resources.

The methodology is based on three essential techniques:

1. Deterministic parsing algorithms for building dependency graphs (Kudo and

Matsumoto 2002; Yamada and Matsumoto 2003; Nivre 2003)

2. History-based feature models for predicting the next parser action (Black et al.

1992; Magerman 1995; Ratnaparkhi 1997; Collins 1999)

3. Discriminative machine learning to map histories to parser actions (Veenstra

and Daelemans 2000; Kudo and Matsumoto 2002; Yamada and Matsumoto

2003; Nivre et al. 2004)

The system uses no grammar but relies completely on inductive learning from

treebank data for the analysis of new sentences and on deterministic parsing for

disambiguation. This combination of methods guarantees that the parser is both

robust, producing a well-formed analysis for every input sentence, and efficient,

deriving this analysis in time that is linear or quadratic in the length of the sentence

(depending on the particular algorithm used).

This methodology has been implemented in the MaltParser system, which can be

applied to a labeled dependency treebank in order to induce a labeled dependency

parser for the language represented by the treebank. MaltParser is freely available

for research and educational purposes1 and has been designed primarily as a tool

for research on data-driven dependency parsing, allowing users to flexibly combine

different parsing algorithms, feature models, and learning algorithms. However,

given that the necessary data resources are available, MaltParser can also be used

1 URL: http://www.msi.vxu.se/users/nivre/research/MaltParser.html.

MaltParser 97

for rapid development of robust and efficient dependency parsers, which can be used

in language technology applications that require parsing of unrestricted text.

In this article, we begin by describing the general methodology of deterministic

dependency parsing with history-based feature models and discriminative machine

learning (section 2). We then describe the implemented MaltParser system, focusing

on its functionality with respect to parsing algorithms, feature models, and learning

algorithms (section 3). To support our claims about language-independence and

resilience against data sparseness, we then present an experimental evaluation based

on data from ten different languages, with treebanks of different sizes and with

different annotation schemes (section 4). Finally, we draw some general conclusions

and make some suggestions for future work (section 5).

2 Inductive dependency parsing

Mainstream approaches in statistical parsing are based on nondeterministic parsing

techniques, usually employing some kind of dynamic programming, in combination

with generative probabilistic models that provide an n-best ranking of the set of

candidate analyses derived by the parser. This methodology is exemplified by the

influential parsers of Collins (1997; 1999) and Charniak (2000), among others. The

accuracy of these parsers can be further improved by reranking the analyses output

by the parser, typically using a discriminative model with global features that are

beyond the scope of the underlying generative model (Johnson et al. 1999; Collins

2000; Collins and Duffy 2002; Collins and Koo 2005; Charniak and Johnson 2005).

A radically different approach is to perform disambiguation deterministically,

using a greedy parsing algorithm that approximates a globally optimal solution by

making a series of locally optimal choices, guided by a classifier trained on gold

standard derivation sequences derived from a treebank. Although this may seem like

a futile strategy for a complex task like parsing, it has recently been used with some

success especially in dependency-based parsing.2 It was first applied to unlabeled

dependency parsing by Kudo and Matsumoto (2002) (for Japanese) and by Yamada

and Matsumoto (2003) (for English). It was later extended to labeled dependency

parsing by Nivre et al. (2004) (for Swedish) and Nivre and Scholz (2004) (for

English). More recently, it has also been applied with good results to lexicalized

phrase structure parsing by Sagae and Lavie (2005).

One of the advantages of the deterministic, classifier-based approach is that it

is straightforward to implement and has a very attractive time complexity, with

parsing time being linear or at worst quadratic in the size of the input, although the

constant associated with the classifier can sometimes become quite large. Moreover,

while the accuracy of a deterministic parser is normally a bit lower than what can be

attained with a more complex statistical model, trained and tuned on large amounts

of data, the deterministic parser will often have a much steeper learning curve,

2 In fact, essentially the same methodology has been proposed earlier for other frameworks
by Berwick (1985), Simmons and Yu (1992), Zelle and Mooney (1993) and Veenstra and
Daelemans (2000), among others, although these approaches have typically been evaluated
only on artificially generated or very small data sets.

98 J. Nivre et al.

which means that it may in fact give higher accuracy with small training data sets.

This is a natural consequence of the fact that the deterministic model has a much

smaller parameter space, where only the mode of the distribution for each distinct

history needs to be estimated, whereas a traditional generative model requires a

complete probability distribution. Finally, and for essentially the same reason, the

deterministic model can be less sensitive to differences in linguistic structure and

annotation style across languages and should therefore be more easily portable

without substantial adaptation.

In this study, we investigate these issues by applying the deterministic, classifier-

based approach, as implemented in the MaltParser system for inductive dependency

parsing, to a wide range of languages with varying annotation schemes and with data

sets of varying sizes. By way of background, this section presents the theoretical

foundations of inductive dependency parsing, defining syntactic representations,

parsing algorithms, feature models, and learning algorithms.3 In section 3, we then

describe the implemented MaltParser system that has been used for the experiments

reported in section 4.

2.1 Dependency graphs

In dependency parsing, the syntactic analysis of a sentence is represented by a

dependency graph, which we define as a labeled directed graph, the nodes of which

are indices corresponding to the tokens of a sentence. Formally:

Definition 1

Given a set R of dependency types (arc labels), a dependency graph for a sentence

x = (w1, . . . , wn) is a labeled directed graph G = (V , E, L), where:

1. V = Zn+1

2. E ⊆ V × V

3. L : E → R

Definition 2

A dependency graph G is well-formed if and only if:

1. The node 0 is a root (Root).

2. G is connected (Connectedness).4

The set V of nodes (or vertices) is the set Zn+1 = {0, 1, 2, . . . , n} (n ∈ Z+), i.e., the set

of non-negative integers up to and including n. This means that every token index i

of the sentence is a node (1 ≤ i ≤ n) and that there is a special node 0, which does

not correspond to any token of the sentence and which will always be a root of the

dependency graph (normally the only root).

3 For an in-depth discussion of inductive dependency parsing and its relation to other parsing
methods, see Nivre (2006).

4 Strictly speaking, we require the graph to be weakly connected, which entails that the
corresponding undirected graph is connected, whereas a strongly connected graph has a
directed path between any pair of nodes.

MaltParser 99

Fig. 1. Dependency graph for Czech sentence from the Prague Dependency Treebank.

In the following, we will reserve the term token node for a node that corresponds

to a token of the sentence, and we will use the symbol V+ to denote the set of

token nodes of a sentence for which the set of nodes is V , i.e., V+ = V − {0}.
When necessary, we will write Vx and V+

x to indicate that V and V+ are the nodes

corresponding to a particular sentence x = (w1, . . . , wn). Note, however, that the only

requirement imposed by x is that the number of nodes matches the length of x, i.e.,

|V+| = n and |V | = n + 1.

The set E of arcs (or edges) is a set of ordered pairs (i, j), where i and j are

nodes. Since arcs are used to represent dependency relations, we will say that i is

the head and j is the dependent of the arc (i, j). As usual, we will use the notation

i→ j to mean that there is an arc connecting i and j (i.e., (i, j) ∈ E) and we will use

the notation i→∗ j for the reflexive and transitive closure of the arc relation E (i.e.,

i→∗ j if and only if i = j or there is a path of arcs connecting i to j).

The function L assigns a dependency type (arc label) r ∈ R to every arc e ∈ E.

We will use the notation i
r→ j to mean that there is an arc labeled r connecting i

to j (i.e., (i, j) ∈ E and L((i, j)) = r).

Figure 1 shows a Czech sentence from the Prague Dependency Treebank with

a well-formed dependency graph according to Definition 1–2. Note that the use

of a special root node (0) is crucial for the satisfaction of Connectedness, since

the graph would otherwise have consisted of two connected components rooted at

nodes 3 and 8, respectively. The use of a special root node is thus a convenient way

of ensuring Connectedness, regardless of whether a particular annotation scheme

requires that a single token node should dominate all the others. More importantly,

it is a way of achieving robustness in parsing, since there will always be a single

entry point into the graph even if the parser produces fragmented output.

The only conditions so far imposed on dependency graphs is that the special node

0 be a root and that the graph be connected. Here are three further constraints that

are common in the literature:

3. Every node has at most one head, i.e., if i→ j then there is no node k such

that k �= i and k → j (Single-Head).

100 J. Nivre et al.

4. The graph G is acyclic, i.e., if i→ j then not j →∗ i (Acyclicity).

5. The graph G is projective, i.e., if i→ j then i→∗ k, for every node k such that

i < k < j or j < k < i (Projectivity).

The Single-Head constraint, together with the basic well-formedness conditions,

entails that the graph is a tree rooted at the node 0, which means that any well-

formed graph satisfying Single-Head also satisfies Acyclicity. And whereas it is

possible to require Acyclicity without Single-Head, the two conditions are jointly

assumed in almost all versions of dependency grammar, especially in computational

systems.

By contrast, Projectivity is much more controversial. Broadly speaking, we

can say that whereas most practical systems for dependency parsing do assume

projectivity, most dependency-based linguistic theories do not. More precisely, most

theoretical formulations of dependency grammar regard projectivity as the norm

but also recognize the need for non-projective representations to capture non-local

dependencies and discontinuities arising from free or flexible word order (Mel’čuk

1988; Hudson 1990). This theoretical preference for non-projective dependency

graphs is usually carried over into treebank annotation schemes, so that virtually

all treebanks annotated with dependency graphs contain non-projective structures.

This is true, for example, of the Prague Dependency Treebank of Czech (Hajič

et al. 2001), the Danish Dependency Treebank (Kromann 2003), and the Turkish

Treebank (Oflazer et al. 2003), all of which are used in this study.

2.2 Deterministic parsing algorithms

The most commonly used deterministic algorithms for dependency parsing can be

seen as variants of the basic shift-reduce algorithm, analyzing the input from left

to right using two main data structures, a queue of remaining input tokens and

a stack storing partially processed tokens. One example is the arc-eager algorithm

introduced in Nivre (2003), which is used in all the experiments in this article and

which we describe in detail in this section. Like most of the algorithms used for

practical dependency parsing, this algorithm is restricted to projective dependency

graphs. We begin by defining a parser configuration for a sentence x = (w1, . . . , wn),

relative to a set R of dependency types (including a special symbol r0 for dependents

of the root):

Definition 3

Given a set R = {r0, r1, . . . rm} of dependency types and a sentence x = (w1, . . . , wn),

a parser configuration for x is a quadruple c = (σ, τ, h, d), where:

1. σ is a stack of token nodes i (1 ≤ i ≤ j for some j ≤ n).

2. τ is a sorted sequence of token nodes i (j < i ≤ n).

3. h : V+
x → Vx is a function from token nodes to nodes.

4. d : V+
x → R is a function from token nodes to dependency types.

5. For every token node i ∈ V+
x , d(i) = r0 only if h(i) = 0.

The idea is that the sequence τ represents the remaining input tokens in a left-to-

right pass over the input sentence x; the stack σ contains partially processed nodes

MaltParser 101

that are still candidates for dependency arcs, either as heads or dependents; and

the functions h and d represent the (partially constructed) dependency graph for the

input sentence x.

Representing the graph by means of two functions in this way is possible if we

assume the Single-Head constraint. Since, for every token node j, there is at most

one arc (i, j), we can represent this arc by letting h(j) = i. Strictly speaking, h should

be a partial function, to allow the possibility that there is no arc (i, j) for a given

node j, but we will avoid this complication by assuming that every node j for

which there is no token node i such that i → j is headed by the special root node

0, i.e., h(j) = 0. Formally, we establish the connection between configurations and

dependency graphs as follows:

Definition 4

A configuration c = (σ, τ, h, d) for x = (w1, . . . , wn) defines the dependency graph

Gc = (Vx, Ec, Lc), where:

1. Ec = {(i, j) | h(j) = i}
2. Lc = {((i, j), r) | h(j) = i, d(j) = r}

We use the following notational conventions for the components of a configuration:

1. Both the stack σ and the sequence of input tokens τ will be represented as

lists, although the stack σ will have its head (or top) to the right for reasons

of perspicuity. Thus, σ|i represents a stack with top i and tail σ, while j|τ
represents a list of input tokens with head j and tail τ, and the operator | is
taken to be left-associative for the stack and right-associative for the input

list. We use ε to represent the empty list/stack.

2. For the functions h and d, we will use the notation f[x �→ y], given a specific

function f, to denote the function g such that g(x) = y and g(z) = f(z) for all

z �= x. More formally, if f(x) = y′, then f[x �→ y] = (f − {(x, y′)}) ∪ {(x, y)}.

Initial and terminal parser configurations are defined in the following way:

Definition 5

A configuration c for x = (w1, . . . , wn) is initial if and only if it has the form

c = (ε, (1, . . . , n), h0, d0), where:

1. h0(i) = 0 for every i ∈ V+
x .

2. d0(i) = r0 for every i ∈ V+
x .

A configuration c for x = (w1, . . . , wn) is terminal if and only if it has the form

c = (σ, ε, h, d) (for arbitrary σ, h and d).

In other words, we initialize the parser with an empty stack, with all the token

nodes of the sentence remaining to be processed, and with a dependency graph

where all token nodes are dependents of the special root node 0 and all arcs are

labeled with the special label r0, and we terminate whenever the list of input tokens

is empty, which happens when we have completed one left-to-right pass over the

sentence. We use C for the set of all possible configurations (relative to some set

102 J. Nivre et al.

R of dependency types) and Cn for the set of non-terminal configurations, i.e., any

configuration c = (σ, τ, h, d) where τ �= ε.

A transition is a partial function t : Cn → C . In other words, a transition maps

non-terminal configurations to new configurations but may be undefined for some

non-terminal configurations. The parsing algorithm uses four transitions, two of

which are parameterized by a dependency type r ∈ R.

Definition 6

Given a set of dependency types R, the following transitions are possible for every

r ∈ R:

1. Left-Arc(r):

(σ|i, j|τ, h, d)→ (σ, j|τ, h[i �→ j], d[i �→ r])

if h(i) = 0

2. Right-Arc(r):

(σ|i, j|τ, h, d)→ (σ|i|j, τ, h[j �→ i], d[j �→ r])

if h(j) = 0

3. Reduce:

(σ|i, τ, h, d)→ (σ, τ, h, d)

if h(i) �= 0

4. Shift:

(σ, i|τ, h, d)→ (σ|i, τ, h, d)

The transition Left-Arc(r) makes the top token i a (left) dependent of the next

token j with dependency type r, i.e., j
r→ i, and immediately pops the stack. This

transition can apply only if h(i) = 0, i.e., if the top token is previously attached

to the root 0. The node i is popped from the stack because it must be complete

with respect to left and right dependents at this point (given the assumption of

projectivity).

The transition Right-Arc(r) makes the next token j a (right) dependent of the

top token i with dependency type r, i.e., i
r→ j, and immediately pushes j onto the

stack. This transition can apply only if h(j) = 0, i.e., if the next token is previously

attached to the root 0.5 The node j is pushed onto the stack since it must be

complete with respect to its left dependents at this point, but it cannot be popped

because it may still need new dependents to the right.

The transition Reduce pops the stack. This transition can apply only if h(i) �= 0,

i.e., if the top token i is already attached to a token node. This transition is needed

for popping a node that was pushed in a Right-Arc(r) transition and which has

since found all its right dependents.

The transition Shift pushes the next token i onto the stack. This transition can

apply unconditionally as long as there are input tokens remaining. It is needed for

5 This condition is in fact superfluous, since it is impossible for the next input token to be
attached to any other node, but it is included for symmetry.

MaltParser 103

processing nodes that have their heads to the right, as well as nodes that are to

remain attached to the special root node.

The transition system just defined is nondeterministic in itself, since there is

normally more than one transition applicable to a given configuration. In order

to perform deterministic parsing, the transition system needs to be supplemented

with a mechanism for predicting the next transition at each nondeterministic choice

point, as well as choosing a dependency type r for the transitions Left-Arc(r) and

Right-Arc(r). Such a mechanism can be called an oracle (Kay 2000). Assuming that

we have an oracle o : Cn → (Cn → C), the algorithm for deterministic dependency

parsing is very simple and straightforward:

Parse(x = (w1, . . . , wn))

1 c← (ε, (1, . . . , n), h0, d0)

2 while c = (σ, τ, h, d) is not terminal

3 if σ = ε

4 c← Shift(c)

5 else

6 c← [o(c)](c)

7 G← (Vx, Ec, Lc)

8 return G

As long as the parser remains in a non-terminal configuration, it applies the Shift

transition if the stack is empty and otherwise the transition o(c) predicted by the

oracle. When a terminal configuration is reached, the dependency graph defined by

this configuration is returned.

The notion of an oracle is useful for the theoretical analysis of parsing algorithms

and allows us to show, for example, that the parsing algorithm just described derives a

well-formed projective dependency graph for any input sentence in time that is linear

in the length of the input, and that any projective dependency graph can be derived

by the algorithm (Nivre 2006). In practice, the oracle can only be approximated,

but the fundamental idea in inductive dependency parsing is that we can achieve a

good approximation using history-based feature models and discriminative machine

learning, as described in the following subsections.

An alternative to the algorithm described in this section is to use an arc-standard

strategy, more directly corresponding to the strict bottom-up processing in traditional

shift-reduce parsing. In this scheme, the Right-Arc(r) and Reduce transitions are

merged into a single transition that immediately pops the dependent in the same way

as Left-Arc(r), which means that right dependents can only be attached after they

have found all their descendants. This is the strategy used by Kudo and Matsumoto

(2002), Yamada and Matsumoto (2003) and Cheng et al. (2004), although they also

modify the algorithm by allowing multiple passes over the input. There are few

studies comparing the performance of different algorithms, but Cheng et al. (2005)

found consistently better accuracy for the arc-eager, single-pass strategy (over the

arc-standard, multi-pass algorithm) in parsing the CKIP Treebank of Chinese.

A somewhat different approach is to use the incremental algorithms described

by Covington (2001), where the stack is replaced by an open list where any token

can be linked to the next input token. This allows non-projective graphs to be

104 J. Nivre et al.

derived at the cost of making parsing time quadratic in the length of the input.

This is a technique that has not yet been evaluated on a large scale, and attempts

at recovering non-projective dependencies within this tradition have so far relied on

post-processing of projective dependency graphs, e.g., using the pseudo-projective

technique proposed by Nivre and Nilsson (2005).

2.3 History-based feature models

History-based models for natural language processing were first introduced by

Black et al. (1992) and have been used extensively for part-of-speech tagging and

syntactic parsing. The basic idea is to map each pair (x, y) of an input string x and

an analysis y to a sequence of decisions D = (d1, . . . , dn). In a generative probabilistic

model, the joint probability P (x, y) can then be expressed using the chain rule of

probabilities as follows:

P (x, y) = P (d1, . . . , dn) =

n∏
i=1

P (di | d1, . . . , di−1)(1)

The conditioning context for each di, (d1, . . . , di−1), is referred to as the history and

usually corresponds to some partially built structure. In order to get a tractable

learning problem, histories are grouped into equivalence classes by a function Φ:

P (x, y) = P (d1, . . . , dn) =

n∏
i=1

P (di |Φ(d1, . . . , di−1))(2)

Early versions of this scheme were integrated into grammar-driven systems. For

example, Black et al. (1993) used a standard PCFG but could improve parsing per-

formance considerably by using a history-based model for bottom-up construction

of leftmost derivations. In more recent developments, the history-based model has

replaced the grammar completely, as in the parsers of Collins (1997; 1999) and

Charniak (2000).

With a generative probabilistic model, the parameters that need to be estimated

are the conditional probabilities P (di |Φ(d1, . . . , di−1)), for every possible decision

di and non-equivalent history Hi = Φ(d1, . . . , di−1). With a deterministic parsing

strategy, we only need to estimate the mode of each conditional distribution, i.e.,

arg maxdi P (di |Φ(d1, . . . , di−1)). This reduces the parameter estimation problem to

that of learning a classifier, where the classes are the possible decisions of the parser,

e.g., the possible transitions of the algorithm described in the previous section.

Distinct parser histories are normally represented as sequences of attributes, so-

called feature vectors, and the function Φ, referred to as the feature model, can

therefore be defined in terms of a sequence Φ1,p = (φ1, . . . , φp) of feature functions,

where each function φi identifies some relevant feature of the history. The most

important features in dependency parsing are the attributes of input tokens, such

as their word form, part-of-speech or dependency type, and we will in fact limit

ourselves in this article to features that can be defined as simple attributes of

tokens.

MaltParser 105

Token attributes can be divided into static and dynamic attributes, where static

attributes are properties that remain constant during the parsing of a sentence.

This primarily includes the actual word form of a token, but also any kind of

annotation that is the result of preprocessing, such as part-of-speech tag, lemma,

or word sense annotation. In this article, we restrict our attention to two kinds of

static attributes, word form and part-of-speech. Given a sentence x = (w1, . . . , wn),

with part-of-speech annotation, we use w(i) and p(i) to refer to the word form and

part-of-speech, respectively, of the ith token. We will also make use of fixed-length

suffixes of word forms and write sm(w(i)) for the m-character suffix of w(i) (where

sm(w(i)) = w(i) if w(i) has length l ≤ m).

Dynamic attributes, by contrast, are attributes that are defined by the partially

built dependency graph, which in this article will be limited to the dependency type

by which a token is related to its head, given by the function d of the current parser

configuration c = (σ, τ, h, d).

To define complex history-based feature models, we need to refer to attributes of

arbitrary tokens in the parser history, represented by the current parser configuration.

For this purpose, we introduce a set of address functions.

Definition 7

Given a sentence x = (w1, . . . , wn) and a parser configuration c = (σ, τ, h, d) for x:

1. σi is the ith token from the top of the stack (starting at index 0).

2. τi is the ith token in the remaining input (starting at index 0).

3. h(i) is the head of token i in the graph defined by h.

4. l (i) is the leftmost child of token i in the graph defined by h.

5. r(i) is the rightmost child of token i in the graph defined by h.

By combining these functions, we can define arbitrarily complex functions that

identify tokens relative to a given parser configuration c. For example, while σ0

is the token on top of the stack, h(σ0) is the head of the token on top of the

stack, and l (h(σ0)) is the leftmost dependent of the head of the token on top of

the stack. It should be noted that these functions are generally partial functions on

token nodes, which means that if one of the inner functions in a chain of applica-

tions returns 0 (because h(i) = 0) or is undefined (because the stack is empty, or a

token does not have a leftmost child, etc.), then the outermost function is always

undefined.

Finally, we can now define feature functions by applying attribute functions

to complex combinations of address functions. For example, p(τ0) is the part-of-

speech of the next input token, while d(h(σ0)) is the dependency type of the head

of the token on top of the stack, which may or may not be defined in a given

configuration. Any feature function that is undefined for a given configuration,

because the complex address function fails to identify a token, is assigned a special

nil value. Feature models used for inductive dependency parsing typically combine

static part-of-speech features and lexical features (or suffix features) with dynamic

dependency type features. The kind of models used in the experiments later on are

described in section 3.2 below.

106 J. Nivre et al.

2.4 Discriminative machine learning

Given a function approximation problem with labeled training data from target

function f : X → Y , discriminative learning methods attempt to optimize the

mapping from inputs x ∈ X to outputs y ∈ Y directly, without estimating a full

generative model of the joint distribution of X and Y . Discriminatively trained

models have in recent years been shown to outperform generative models for

many problems in natural language processing, including syntactic parsing, by

directly estimating a conditional probability distribution P (Y |X) (Johnson et al.

1999; Collins 2000; Collins and Duffy 2002; Collins and Koo 2005; Charniak and

Johnson 2005). With a deterministic parsing strategy, the learning problem can

be further reduced to a pure classification problem, where the input instances are

histories (represented by feature vectors) and the output classes are parsing decisions.

Thus, the training data for the learner consists of pairs (Φ(c), t), where Φ(c) is

the representation of a parser configuration defined by the feature model Φ(c) and

t is the correct transition out of c. Such data can be generated from a treebank of

gold standard dependency graphs, by reconstructing the correct transition sequence

for each dependency graph in the treebank and extracting the appropriate feature

vectors for each configuration, as described in detail by Nivre (2006) for the parsing

algorithm discussed in section 2.2.

Although in principle any learning algorithm capable of inducing a classifier from

labeled training data can be used to solve the learning problem posed by inductive

dependency parsing, most of the work done in this area has been based on support

vector machines (SVM) and memory-based learning (MBL).6

SVM is a hyperplane classifier that relies on the maximum margin strategy

introduced by Vapnik (1995). Furthermore, it allows the use of kernel functions to

map the original feature space to a higher-dimensional space, where the classification

problem may be (more) linearly separable. In dependency parsing, SVM has been

used primarily by Matsumoto and colleagues (Kudo and Matsumoto 2002; Yamada

and Matsumoto 2003; Cheng et al. 2004; Cheng et al. 2005).

MBL is a lazy learning method, based on the idea that learning is the simple

storage of experiences in memory and that solving a new problem is achieved by

reusing solutions from similar previously solved problems (Daelemans and Van den

Bosch 2005). In essence, this is a k nearest neighbor approach to classification,

although a variety of sophisticated techniques, including different distance metrics

and feature weighting schemes can be used to improve classification accuracy. In

dependency parsing, MBL has been used primarily by Nivre and colleagues (Nivre

et al. 2004; Nivre and Scholz 2004; Nivre and Nilsson 2005), and it is also the

learning method that is used for the experiments in this article.

3 MaltParser

MaltParser is an implementation of inductive dependency parsing, as described

in the previous section, where the syntactic analysis of a sentence amounts to

6 In addition, maximum entropy modeling was used in the comparative evaluation of Cheng
et al. (2005).

MaltParser 107

the deterministic derivation of a dependency graph, and where discriminative

machine learning is used to guide the parser at nondeterministic choice points,

based on a history-based feature model. MaltParser can also be characterized as

a data-driven parser-generator. While a traditional parser-generator constructs a

parser given a grammar, a data-driven parser-generator constructs a parser given a

treebank.

The system can be run in two basic modes. In learning mode, it takes as input a

(training) set of sentences with dependency graph annotations, derives training data

by reconstructing the correct transition sequences, and trains a classifier on this data

set according to the specifications of the user. In parsing mode, it takes as input a

(test) set of sentences and a previously trained classifier and parses the sentences

using the classifier as a guide.

3.1 Parsing algorithms

MaltParser provides two main parsing algorithms, each with several options:

• The linear-time algorithm of Nivre (2003) can be run in arc-eager or arc-

standard mode. The arc-standard version is similar to but not identical to

the algorithm of Yamada and Matsumoto (2003), since the latter also uses

multiple passes over the input (Nivre 2004). In both versions, this algorithm

is limited to projective dependency graphs.

• The incremental algorithm of Covington (2001) can be run in projective or

non-projective mode. In the latter case, graphs are still guaranteed to obey

the constraints Root, Connectedness, Single-Head and Acyclicity.

The experiments reported in this article are all based on the arc-eager version of

Nivre’s algorithm.

3.2 Feature models

MaltParser allows the user to define arbitrarily complex feature models, using address

functions and attribute functions as described in section 2.3.7 The standard model

used in most of the experiments reported below combines part-of-speech features,

lexical features and dependency type features in the following way:

p(σ1) w(h(σ0)) d(l(σ0))

p(σ0) w(σ0) d(σ0)

p(τ0) w(τ0)) d(r(σ0))

p(τ1) w(τ1) d(l(τ0))

p(τ2)

p(τ3)

7 The feature models supported by MaltParser are in fact slightly more general in that
they also allow address functions that refer to siblings. This option is not exploited in
the experiments reported below and has therefore been excluded from the presentation in
section 2.3.

108 J. Nivre et al.

This model includes six part-of-speech features, defined by the part-of-speech of the

two topmost stack tokens (p(σ0), p(σ1)) and by the first four tokens of the remaining

input (p(τ0), p(τ1), p(τ2), p(τ3)). The dependency type features involve the top token

on the stack (d(σ0)), its leftmost and rightmost dependent (d(l(σ0)), d(r(σ0))), and

the leftmost child of the next input token (d(l(τ0))).
8 Finally, the standard model

includes four lexical features, defined by the word form of the top token on the

stack (w(σ0)), the head of the top token (w(h(σ0))), and the next two input tokens

(w(τ0), w(τ1)).

The standard model can be seen as the prototypical feature model used in the

experiments reported below, although the tuned models for some languages deviate

from it by adding or omitting features, or by replacing lexical features by suffix

features (the latter not being used at all in the standard model). Deviations from

the standard model are specified in table 3 below.

3.3 Learning algorithms

MaltParser provides two main learning algorithms, each with a variety of options:

• Memory-based learning (MBL) using TiMBL, a software package for memory-

based learning and classification developed by Daelemans, Van den Bosch and

colleagues at the Universities of Tilburg and Antwerp (Daelemans and Van den

Bosch 2005).

• Support vector machines (SVM) using LIBSVM, a library for SVM learning

and classification developed by Chang and Lin at National Taiwan University

(Chang and Lin 2001).

The experiments reported in this paper are all based on MBL and make crucial use

of the following features of TiMBL:

• Varying the number k of nearest neighbors

• Using the Modified Value Difference Metric (MVDM) for distances between

feature values (for values seen more than l times)

• Distance-weighted class voting for determining the majority class

The optimal values for these parameters vary for different feature models, languages

and data sets, but typical values are k = 5, MVDM down to l = 3 (with the simple

Overlap metric for lower frequencies), and class voting weighted by inverse distance

(ID). For more information about these and other TiMBL features, we refer to

Daelemans and Van den Bosch (2005).

3.4 Auxiliary tools

MaltParser is supported by a suite of freely available tools for, among other things,

parser evaluation and treebank conversion. Of special interest in this context are

8 It is worth pointing out that, given the nature of the arc-eager parsing algorithm, the
dependency type of the next input token and its rightmost child will always be undefined
at decision time (hence their omission in the standard model and all other models).

MaltParser 109

the tools for pseudo-projective dependency parsing (Nivre and Nilsson 2005). This

is a method for recovering non-projective dependencies through a combination of

data-driven projective dependency parsing and graph transformation techniques in

the following way:

1. Dependency graphs in the training data sets are transformed (if necessary) to

projective dependency graphs, by minimally moving non-projective arcs up-

wards towards the root and encoding information about these transformations

in arc labels.

2. The projective parser is trained as usual, except that the dependency graphs

in the training set are labeled with the enriched arc labels.

3. New sentences are parsed into projective dependency graphs with enriched arc

labels.

4. Dependency graphs produced by the parser are transformed (if possible) to

non-projective dependency graphs, using an inverse transformation guided by

information in the arc labels.

This methodology has been used in a few of the experiments reported below, in

particular for the parsing of Czech (section 4.2.5).

4 Experimental evaluation

In this section, we summarize experiments with the MaltParser system on data

from ten different languages: Bulgarian, Chinese, Czech, Danish, Dutch, English,

German, Italian, Swedish and Turkish.9 Although the group is dominated by Indo-

European languages, in particular Germanic languages, the languages nevertheless

represent fairly different language types, ranging from Chinese and English, with

very reduced morphology and relatively inflexible word order, to languages like

Czech and Turkish, with rich morphology and flexible word order, and with

Bulgarian, Danish, Dutch, German, Italian and Swedish somewhere in the middle.

In addition, the treebank annotation schemes used to analyze these languages differ

considerably. Whereas the treebanks for Czech, Danish, Italian and Turkish are

proper dependency treebanks, albeit couched in different theoretical frameworks,

the annotation schemes for the remaining treebanks are based on constituency

in combination with grammatical functions, which necessitates a conversion from

constituent structures to dependency structures.

Below we first describe the general methodology used to evaluate the system,

in particular the evaluation metrics used to assess parsing accuracy, and give an

overview of the different data sets and experiments performed for different languages

(section 4.1). This is followed by a presentation of the results (section 4.2), with

specific subsections for each language (section 4.2.1–4.2.10), where we also give

a more detailed description of the respective treebanks and the specific settings

9 Results have been published previously for Swedish (Nivre et al. 2004; Nivre 2006), English
(Nivre and Scholz 2004; Nivre 2006), Czech (Nivre and Nilsson 2005), Bulgarian (Marinov
and Nivre 2005), Danish (Nivre and Hall 2005) and Italian (Chanev 2005) but not for
Chinese, German and Turkish.

110 J. Nivre et al.

Table 1. Data sets. AS = Annotation scheme (C = Constituency, D = Dependency,

G = Grammatical functions); Pro = Projective; #D = Number of dependency types;

#P = Number of PoS tags; TA =Tagging accuracy; #W = Number of words; #S =

Number of sentences; SL = Mean sentence length; EM = Evaluation method (T =

Held-out test set, CVk = k-fold cross-validation)

Language AS Pro #D #P TA #W #S SL EM

Bulgarian C no 14 51 93.5 72k 5.1k 14.1 CV8

Chinese CG yes 12 35 100.0 509k 18.8k 27.1 T
Czech D no 26 28 94.1 1507k 87.9k 17.2 T
Danish D no 54 33 96.3 100k 5.5k 18.2 T
Dutch CD no 23 165 95.7 186k 13.7k 13.6 T
English CG yes 12 48 96.1 1174k 49.2k 23.8 T
German CG no 31 55 100.0 382k 22.1k 17.3 CV10

Italian D no 17 89 93.1 42k 1.5k 27.7 CV10

Swedish CG yes 17 46 95.6 98k 6.3k 15.5 T
Turkish D no 24 484 100.0 48k 5.6k 8.6 CV10

used for individual experiments, followed by a general discussion, where we bring

together the results from different languages and try to discern some general trends

(section 4.3).

4.1 Method

Table 1 gives an overview of the data sets for the ten languages. The first column

characterizes the annotation scheme and the second indicates whether the (possibly

converted) annotation is restricted to projective dependency graphs. The next two

columns contain the number of distinct dependency types and part-of-speech tags,

respectively, where the latter refers to the tagset actually used in parsing, which may

be a reduced version of the tagset used in the original treebank annotation. The

fifth column gives the mean accuracy of the part-of-speech tagging given as input to

the parser, where 100.0 indicates that experiments have been performed using gold

standard tags (i.e., manually assigned or corrected tags) rather than the output of an

automatic tagger. The next three columns give the number of tokens and sentences,

and the mean number of words per sentence. These figures refer in each case to the

complete treebank, of which at most 90% has been used for training and at least

10% for testing (possibly using k-fold cross-validation).

Table 2 gives a little more information about the syntactic analysis adopted in

the different treebank annotation schemes. Whereas all the schemes agree on basic

structures such as verbs taking their core arguments as dependents and adjuncts

being dependents of the heads they modify, there are a number of constructions

that have competing analyses with respect to their dependency structure. This

holds in particular for constructions involving function words, such as auxiliary

verbs, prepositions, determiners, and complementizers, but also for the ubiquitous

phenomenon of coordination. Table 2 shows the choices made for each of these

cases in the different treebanks, and we see that there is a fair amount of variation

MaltParser 111

Table 2. Annotation style (choice of head). VG = Verb group (Aux = Auxiliary

verb, MV = Main verb); AP = Adpositional phrase (Ad = Adposition, N = Nominal

head); NP = Noun phrase (Det = Determiner, N = Noun); SC = Subordinate clause

(Comp = Complementizer, V = Verb); Coord = Coordination (CC = Coordinating

conjunction, Conj1 = First conjunct, Conjn = Last conjunct); NA = Not applicable

Language VG AP NP SC Coord

Bulgarian MV Ad N Comp Conj1
Chinese Aux Ad N Comp Conj1/Conjn
Czech MV Ad N V CC
Danish Aux Ad Det Comp Conj1
Dutch Aux Ad N Comp CC
English Aux Ad N Comp Conj1/Conjn
German Aux Ad N V Conj1
Italian MV Ad Det Comp Conj1
Swedish Aux Ad N Comp Conj1
Turkish NA (Ad) N NA Conjn

especially with respect to verb groups and coordination.10 It is worth noting that for

Turkish, which is a richly inflected, agglutinative language, some of the distinctions

are not applicable, since the relevant construction is encoded morphologically rather

than syntactically.11 It is also important to remember that, for the treebanks that are

not originally annotated with dependency structures, the analysis adopted here only

represents one conversion out of several possible alternatives. More information

about the conversions are given for each language below.

All the experiments reported in this article have been performed with the parsing

algorithm described in Nivre (2003; 2004; 2006) and with memory-based learning

and classification as implemented in the TiMBL software package by Daelemans

and Van den Bosch (2005). A variety of feature models have been tested, but we

only report results for the optimal model for each language, which is characterized

in relation to the standard model defined in section 3.2. Standard settings for the

TiMBL learner include k = 5 (number of nearest distances), MVDM metric down

to a threshold of l = 3, and distance weighted class voting with Inverse Distance

weights (ID).

Final evaluation has been performed using either k-fold cross-validation or a

held-out test set, as shown in the last column in table 1. Evaluation on held-out data

has in turn been preceded by a tuning phase using either k-fold cross-validation

or a development test set, as described for each language below. The diversity in

evaluation methods is partly a result of practical circumstances and partly motivated

by the concern to make results comparable to previously published results for a

10 The notation Conj1/Conjn under Coord for Chinese and English signifies that coordination
is analyzed as a head-initial or head-final construction depending on whether the underlying
phrase type is head-initial (e.g., verb phrases) or head-final (e.g., noun phrases).

11 Whereas postpositions generally appear as suffixes on nouns, there are marginal cases
where they occur as separate words and are then treated as heads. Hence, the brackets
around Ad in the AP column for Turkish.

112 J. Nivre et al.

given language. Thus, while results on the Penn Treebank are customarily obtained

by training on sections 2–21 and testing on section 23 (using any of the remaining

sections as a development test set), results on the Turkish Treebank have so far been

based on ten-fold cross-validation, which is well motivated by the limited amount of

data available. It should also be noted that the amount of work devoted to model

selection and parameter optimization varies considerably between the languages,

with Swedish and English being most thoroughly investigated while the results for

other languages, notably Dutch, German and Turkish, are still preliminary and can

probably be improved substantially.

The evaluation metrics used throughout are the unlabeled attachment score ASU ,

which is the proportion of tokens that are assigned the correct head (regardless of

dependency type), and the labeled attachment score ASL, which is the proportion of

tokens that are assigned the correct head and the correct dependency type, following

the proposal of Lin (1998). All results are presented as mean scores per token, with

punctuation tokens excluded from all counts.12 For each language, we also provide

a more detailed breakdown with (unlabeled) attachment score, precision, recall and

F measure for individual dependency types.

Before we turn to the experimental results, a caveat is in order concerning

their interpretation and in particular about cross-linguistic comparability. The main

point of the experimental evaluation is to corroborate the claim that MaltParser

is language-independent enough to achieve reasonably accurate parsing for a wide

variety of languages, where the level of accuracy is related, whenever possible, to

previously obtained results for that language. In order to facilitate this kind of

comparison, we have sometimes had to sacrifice comparability between languages,

notably by using training sets of different size or different procedures for obtaining

accuracy scores as explained earlier. This means that, even though we sometimes

compare results across languages, such comparisons must be taken with a pinch

of salt. Although a more controlled cross-linguistic comparison would be very

interesting, it is also very difficult to achieve given that available resources are

very diverse with respect to standards of annotation, the amount of annotated

data available, the existence of accurate part-of-speech taggers, etc. Faced with this

diversity, we have done our best to come up with a reasonable compromise between

the conflicting requirements of ensuring cross-linguistic comparability and being

faithful to existing theoretical and practical traditions for specific languages and

treebanks. This means, for example, that we retain the original arc labels for all

treebanks, so that users of these treebanks can easily relate our results to theirs,

even though this has the consequence that, e.g., subjects will be denoted by a variety

of labels such as SUB, SBJ, SUBJ and Sb, but all arc labels will be accompanied

by descriptions that should make them understandable also for readers who are not

familiar with a given treebank annotation scheme.

12 Although punctuation tokens are excluded in the calculation of accuracy scores, they are
included during parsing. No changes have been made to the tokenization or sentence
segmentation found in the respective treebanks, except for Turkish (see section 4.2.10).

MaltParser 113

Table 3. Overview of results. Model = Best feature model (− = omitted, + = added,

→ = replaced by); Settings = TiMBL settings; ASU = Unlabeled attachment score;

ASL = Labeled attachment score

Language Model Settings ASU ASL

Bulgarian ∀a[w(a)→ s6(w(a)))] Standard 81.3 73.6
Chinese Standard k = 6, l = 8 81.1 79.2
Czech Standard Standard 80.1 72.8
Danish [w(h(σ0))→ s6(w(h(σ0)));−w(τ1)] Standard 85.6 79.5
Dutch Standard k = 10 84.7 79.2
English Standard k = 7, l = 5 88.1 86.3
German [−w(h(σ0));−w(τ1); +p(σ2)] k = 13, IL 88.1 83.4
Italian Standard Standard 82.9 75.7
Swedish Standard Standard 86.3 82.0
Turkish [−p(σ1);−p(τ2);−p(τ3);−w(h(σ0));−w(τ1)] Standard 81.6 69.0

4.2 Results

Table 3 gives an overview of the results, summarizing for each language the optimal

feature model and TiMBL parameter settings, as well as the best unlabeled and

labeled attachment scores. In the following subsections, we analyze the results for

each language in a little more detail, making state-of-the-art comparisons where

this is possible. The earliest experiments were those performed on Swedish and

English and the standard models and settings are mainly based on the results of

these experiments. It is therefore natural to treat Swedish and English first, with the

remaining languages following in alphabetical order.

4.2.1 Swedish

The Swedish data come from Talbanken (Einarsson 1976), a manually annotated

corpus of both written and spoken Swedish, created at Lund University in the

1970s. We use the professional prose section, consisting of material taken from

textbooks, newspapers and information brochures. Although the original annotation

scheme is an eclectic combination of constituent structure, dependency structure,

and topological fields (Teleman 1974), it has been possible to convert the annotated

sentences to dependency graphs with very high accuracy. In the conversion process,

we have reduced the original fine-grained classification of grammatical functions to

a more restricted set of 17 dependency types, mainly corresponding to traditional

grammatical functions such as subject, object and adverbial. We have used a pseudo-

randomized data split, dividing the data into 10 sections by allocating sentence i

to section imod 10. We have used sections 1–9 for 9-fold cross-validation during

development and section 0 for final evaluation.

The overall accuracy scores for Swedish, obtained with the standard model and

standard settings, are ASU = 86.3% and ASL = 82.0%. Table 4 gives unlabeled

attachment score (ASU), labeled precision (P), recall (R) and F measure (F) for

individual dependency types in the Swedish data. These types can be divided into

three groups according to accuracy. In the high-accuracy set, with a labeled F

114 J. Nivre et al.

Table 4. Attachment score (ASU), precision (P), recall (R) and F measure per

dependency type for Swedish (held-out test set, section 0)

Dependency Type n ASU P R F

Adverbial (ADV) 1607 79.8 75.8 76.8 76.3
Apposition (APP) 42 23.8 38.1 19.0 25.4
Attribute (ATT) 950 81.3 79.9 78.5 79.2
Coordination (CC) 963 82.5 78.1 79.8 78.9
Determiner (DET) 947 92.6 88.9 90.2 89.5
Idiom (ID) 254 72.0 72.5 58.3 64.6
Infinitive marker (IM) 133 98.5 98.5 98.5 98.5
Infinitive complement (INF) 10 100.0 100.0 30.0 46.2
Object (OBJ) 585 88.0 78.2 77.3 77.7
Preposition dependent (PR) 985 94.2 88.6 92.7 90.6
Predicative (PRD) 244 90.6 76.7 77.0 76.8
Root (ROOT) 607 91.3 84.6 91.3 87.8
Subject (SUB) 957 89.8 86.7 82.5 84.5
Complementizer dependent (UK) 213 85.0 89.4 83.6 86.4
Verb group (VC) 238 93.7 82.1 90.6 86.1
Other (XX) 29 82.8 85.7 20.7 33.3

Total 8764 86.3 82.0 82.0 82.0

measure from 84% to 98%, we find all dependency types where the head is

a closed class word: IM (marker → infinitive), PR (preposition → noun), UK

(complementizer → verb) and VC (auxiliary verb → main verb). We also find the

type DET (noun → determiner), which has similar characteristics although the

determiner is not treated as the head in the Swedish annotation. The high-accuracy

set also includes the central dependency types ROOT and SUB, which normally

identify the finite verb of the main clause and the grammatical subject, respectively.

In the medium-accuracy set, with a labeled F measure in the range of 75–80%,

we find the remaining major dependency types, ADV (adverbial), ATT (nominal

modifier), CC (coordination), OBJ (object) and PRD (predicative). However, this set

can be divided into two subsets, the first consisting of ADV, ATT and CC, which have

an unlabeled attachment score not much above the labeled F measure, indicating

that parsing errors are mainly due to incorrect attachment. This is plausible since

ADV and ATT are the dependency types typically involved in modifier attachment

ambiguities and since coordination is also a source of attachment ambiguities. The

second subset contains OBJ and PRD, which both have an unlabeled attachment

score close to 90%, which means that they are often correctly attached but may

be incorrectly labeled. This is again plausible, since these types identify nominal

arguments of the verb (other than the subject), which can often occur in the same

structural positions.

Finally, we have a low-accuracy set, with a labeled F measure below 70%, where

the common denominator is mainly low frequency: INF (infinitive complements),

APP (appositions), XX (unclassifiable). The only exception to this generalization is

the type ID (idiom constituent), which is not that rare but which is rather special

for other reasons. All types in this set except APP have a relatively high unlabeled

attachment score, but their labels are seldom used correctly.

MaltParser 115

Table 5. Attachment score (ASU), precision (P), recall (R) and F measure per

dependency type for English (held-out test set, section 23)

Dependency Type n ASU P R F

Adjective/adverb modifier (AMOD) 2072 78.2 80.7 73.0 76.7
Other (DEP) 259 42.9 56.5 30.1 39.3
Noun modifier (NMOD) 21002 91.2 91.1 90.8 91.0
Object (OBJ) 1960 86.5 78.9 83.5 81.1
Preposition modifier (PMOD) 5593 90.2 87.7 89.5 88.6
Predicative (PRD) 832 90.0 75.9 71.8 73.8
Root (ROOT) 2401 86.4 78.8 86.4 82.4
Complementizer dependent (SBAR) 1195 86.0 87.1 85.1 86.1
Subject (SBJ) 4108 90.0 90.6 88.1 89.3
Verb group (VC) 1771 98.8 93.4 96.6 95.0
Adverbial (VMOD) 8175 80.3 76.5 77.1 76.8

Total 49368 88.1 86.3 86.3 86.3

Relating the Swedish results to the state of the art is rather difficult, since there is

no comparable evaluation reported in the literature, let alone based on the same data.

Voutilainen (2001) presents a partial and informal evaluation of a Swedish FDG

parser, based on manually checked parses of about 400 sentences from newspaper

text, and reports F measures of 95% for subjects and 92% for objects. These results

clearly indicate a higher level of accuracy than that attained in the experiments

reported here, but without knowing the details of the data selection and evaluation

procedure it is very difficult to draw any precise conclusions.

4.2.2 English

The data set used for English is the standard data set from the Wall Street Journal

section of the Penn Treebank, with sections 2–21 used for training and section 23 for

testing (with section 00 as the development test set). The data has been converted

to dependency trees using the head percolation table of Yamada and Matsumoto

(2003), and dependency type labels have been inferred using a variation of the

scheme employed by Collins (1999), which makes use of the nonterminal labels

on the head daughter, non-head daughter and parent corresponding to a given

dependency relation. However, instead of simply concatenating these labels, as in

the Collins scheme, we use a set of rules to map these complex categories onto a set

of 10 dependency types, including traditional grammatical functions such as subject,

object, etc. More details about the conversion can be found in Nivre (2006).

The best performing model for English is the standard model and the TiMBL

parameter settings deviate from the standard ones only by having a higher k value

(k = 7) and a higher threshold for MVDM (l = 5). The overall accuracy scores for

English are ASU = 88.1% and ASL = 86.3%. The relatively narrow gap between

unlabeled and labeled accuracy is probably due mainly to the coarse-grained nature

of the dependency type set and perhaps also to the fact that these labels have

been inferred automatically from phrase structure representations. Table 5 shows

the accuracy for individual dependency types in the same way as for Swedish in

116 J. Nivre et al.

table 4, and again we can divide dependency types according to accuracy into three

sets. In the high-accuracy set, with a labeled F measure from 86% to 95%, we find

SBJ (subject) and three dependency types where the head is a closed class word:

PMOD (preposition → complement/modifier), VC (auxiliary verb → main verb)

and SBAR (complementizer→ verb). In addition, this set includes the type NMOD,

which includes the noun-determiner relation as an important subtype.

In the medium-accuracy set, with a labeled F measure from 74% to 82%, we find

the types AMOD, VMOD, OBJ, PRD and ROOT. The former two dependency types

mostly cover adverbial functions, and have a labeled accuracy not too far below

their unlabeled attachment score, which is an indication that the main difficulty

lies in finding the correct head. By contrast, the argument functions OBJ and PRD

have a much better unlabeled attachment score, which shows that they are often

attached to the correct head but misclassified. This tendency is especially pronounced

for the PRD type, where the difference is more than 15 percentage points, which

can probably be explained by the fact that this type is relatively infrequent in the

annotated English data. The low-accuracy set for English only includes the default

classification DEP. The very low accuracy for this dependency type can be explained

by the fact that it is both a heterogeneous category and the least frequent dependency

type in the data.

Compared to the state of the art, the unlabeled attachment score is about 4%

lower than the best reported results, obtained with the parser of Charniak (2000) and

reported in Yamada and Matsumoto (2003).13 For the labeled attachment score, we

are not aware of any strictly comparable results, but Blaheta and Charniak (2000)

report an F measure of 98.9% for the assignment of grammatical role labels to

phrases that were correctly parsed by the parser described in Charniak (2000),

using the same data set. If null labels are excluded, the F score drops to 95.6%.

The corresponding F measures for MaltParser are 98.0% and 97.8%, treating the

default label DEP as the equivalent of a null label. The experiments are not strictly

comparable, since they involve different sets of functional categories (where only

the labels SBJ and PRD are equivalent) and one is based on phrase structure and

the other on dependency structure, but it nevertheless seems fair to conclude that

MaltParser’s labeling accuracy is close to the state of the art, even if its capacity to

derive correct structures is not.

4.2.3 Bulgarian

For the current experiments we used a subset of BulTreeBank (Simov et al. 2002),

since the complete treebank is not officially released and still under development. The

set contains 71703 words of Bulgarian text from different sources, annotated with

constituent structure. Although the annotation scheme is meant to be compatible

with the framework of HPSG, syntactic heads are not explicitly annotated, which

13 The score for the Charniak parser has been obtained by converting the output of the parser
to dependency structures using the same conversion as in our experiments, which means
that the comparison is as exact as possible. For further comparisons, see Nivre (2006).

MaltParser 117

Table 6. Attachment score (ASU), precision (P), recall (R) and F measure per

dependency type for Bulgarian (mean of 8-fold cross-validation, frequency counts

rounded to whole integers)

Dependency Type n ASU P R F

Adverbial (ADV) 914 67.2 59.4 51.2 55.0
Apposition (APP) 120 65.5 54.1 49.0 51.9
Attribute (ATT) 1297 79.6 74.0 75.4 74.7
Coordination (CC) 555 53.6 52.8 48.5 50.6
Determiner (DET) 259 82.9 80.2 76.5 78.3
Idiom (ID) 214 94.6 90.2 89.5 89.8
Object (OBJ) 949 85.9 66.9 70.4 68.6
Preposition dependent (PR) 1137 93.6 91.8 93.2 92.5
Predicative (PRD) 254 89.8 65.7 73.3 69.3
Root (ROOT) 635 88.7 76.8 88.7 82.3
Subject (SUBJ) 600 82.7 68.9 66.8 67.8
Complementizer dependent (UK) 418 88.1 87.5 88.7 88.1
Verb group (VC) 397 79.8 71.2 72.5 71.8

Total 7748 81.3 73.6 73.6 73.6

means that the treebank must be converted to dependency structures using the same

kind of head percolation tables and inference rules that were used for the English

data, except that for Bulgarian the converted treebank also contains non-projective

dependencies. In most cases, these involve subordinate da-clauses, where we often

find subject-to-object or object-to-object raising. In these cases, we have taken da

to be the head of the subordinate clause with the main verb dependent on da and

the raised subject or object dependent on the main verb. More details about the

conversion can be found in Marinov and Nivre (2005).

Experiments were performed with several models but the highest accuracy was

achieved with a variant of the standard model, where all lexical features are based

on suffixes of length 6, rather than the full word forms. That is, every lexical feature

w(a) (with address function a) is replaced by s6(w(a)) (cf. section 2.3). The overall

accuracy scores for Bulgarian are 81.3% (ASU) and 73.6% (ASL). Using suffixes

instead of full forms makes the data less sparse, which can be an advantage for

languages with limited amounts of data, especially if the endings of content words

can be expected to carry syntactically relevant information. The optimal suffix length

can be determined using cross-validation, and a length of 6 seems to work well for

several languages, presumably because it captures the informative endings of content

words while leaving most function words intact.

Table 6 gives accuracy, precision, recall and balanced F measures for individual

dependency types. The overall trend is the same as for Swedish and English in

that dependency relations involving function words tend to have higher accuracy

than relations holding primarily between content words. Thus, the highest ranking

dependency types with respect to the F measure are PR (preposition → noun) and

UK (complementizer → verb), together with ID (multi-word unit), which in the

Bulgarian data includes verbs taking the reflexive/possessive pronouns se and si.

Further down the list we find as expected the major verb complement types OBJ

(object) and PRD (predicative complement) but also SUBJ (subject), which has

118 J. Nivre et al.

considerably lower accuracy than the corresponding type in Swedish and English.

This is a reflection of the more flexible word order in Bulgarian.

Other dependency types that are ranked lower for Bulgarian than for the other

languages considered so far are DET (noun → determiner) and VC (auxiliary verb

← main verb). In the former case, since Bulgarian lacks free-standing determiners

like English the, this category was reserved for demonstratives (this, that, etc.), which

occurred infrequently. In the latter case, this again seems to be related to word order

properties, allowing the verbs to be separated by adverbials or even subordinate

clauses (which will also lead the parser to erroneously connect verbs that belong to

different clauses). Finally, we note that coordinate structures (CC) and adverbials

(ADV) have very low accuracy (with an F measure below 60%). For adverbials, one

possible error source is the fact that many adverbs coincide in form with the third

person singular form of adjectives.

There are no other published results for parsing Bulgarian, except for a paper

by Tanev and Mitkov (2002), who report precision and recall in the low 60s for

a rule-based parser. However, this parser has only been tested on 600 syntactic

phrases, as compared to the 5080 sentences used in the present study, so it is very

difficult to draw any conclusions about the relative quality of the parsers.

4.2.4 Chinese

The Chinese data are taken from the Penn Chinese Treebank (CTB), version 5.1

(Xue et al. 2005), and the texts are mostly from Xinhua newswire, Sinorama news

magazine and Hong Kong News. The annotation of CTB is based on a combination

of constituent structure and grammatical functions and has been converted in the

same way as the data for English and Bulgarian, with a head percolation table

created by a native speaker for the purpose of machine translation. Dependency

type labels have been inferred using an adapted version of the rules developed for

English, which is possible given that the treebank annotation scheme for CTB is

modeled after that for the English Penn Treebank. More details about the conversion

can be found in Hall (2006).

One often underestimated parameter in parser evaluation is the division of data

into training, development and evaluation sets. Levy and Manning (2003) report up

to 10% difference in parsing accuracy for different splits of CTB 2.0. We have used

the same pseudo-randomized split as for Swedish (cf. section 4.2.1), with sections

1–8 for training, section 9 for validation, and section 0 for final evaluation. The

results presented in this article are based on gold-standard word segmentation and

part-of-speech tagging.

The best performing model for Chinese is the standard one and the same goes

for TiMBL settings except that k = 6 and l = 8. Table 7 presents the unlabeled

attachment score (ASU), labeled precision (P), recall (R) and F measure (F) for

individual dependency types in the Chinese data. We see that the overall accuracy

scores for Chinese are ASU = 81.1% and ASL = 79.2%, and the difference between

labeled and unlabeled accuracy is generally very small also on the level of individual

dependency types, with a few notable exceptions. Both SBJ (subject) and VC (verb

MaltParser 119

Table 7. Attachment score (ASU), precision (P), recall (R) and F measure per

dependency type for Chinese (held-out test set, section 0)

Dependency Type n ASU P R F

Adjective/adverb modifier (AMOD) 1503 95.2 95.8 94.5 95.1
Other (DEP) 2999 90.5 92.4 89.5 90.9
Noun modifier (NMOD) 13046 85.4 86.3 85.2 85.7
Object (OBJ) 2802 86.0 82.8 85.3 84.0
Preposition modifier (PMOD) 1839 77.3 81.3 77.2 79.2
Predicative (PRD) 467 78.8 81.4 76.0 78.6
Root (ROOT) 1880 70.5 55.4 70.5 62.0
Complementizer dependent (SBAR) 1296 83.6 83.6 83.3 83.4
Subject (SBJ) 3242 83.2 73.3 78.5 75.8
Verb group (VC) 940 80.0 76.0 75.1 75.5
Adverbial (VMOD) 12043 72.6 71.3 68.8 70.0

Total 42057 81.1 79.2 79.2 79.2

chain) have considerably lower labeled F measure than unlabeled attachment score,

which indicates that these relations are difficult to classify correctly even if the head-

dependent relations are assigned correctly. For the special ROOT label, we find a

very low precision, which reflects fragmentation in the output (since too many tokens

remain attached to the special root node), but even the recall is substantially lower

than for any other language considered so far. This may indicate that the feature

model has not yet been properly optimized for Chinese, but it may also indicate a

problem with the arc-eager parsing strategy adopted in all the experiments.

It is rather difficult to compare results on parsing accuracy for Chinese because of

different data sets, word segmentation strategies, dependency conversion methods,

and data splits. But the unlabeled attachment score obtained in our experiments is

within 5% of the best reported results for CTB (Cheng et al. 2005).

4.2.5 Czech

The Prague Dependency Treebank (PDT) consists of 1.5M words of newspaper text,

annotated on three levels, the morphological, analytical and tectogrammatical levels

(Hajič et al. 2001). Our experiments all concern the analytical annotation, which uses

a set of 28 surface-oriented grammatical functions (Böhmová et al. 2003). Unlike the

treebanks discussed so far, PDT is a genuine dependency treebank also including

non-projective dependencies.

The best results for Czech are again based on the standard model with standard

settings, although it should be acknowledged that the sheer size of the Czech data

sets makes it hard to perform extensive optimization of feature model and learning

algorithm parameters. The experiments are based on the designated training and

development sets in the treebank distribution, with final evaluation on the separate

test set (Hajič et al. 2001).

Although less than 2% of all arcs in the training data are non-projective, they are

distributed over as many as 23% of the sentences. It follows that the configuration of

120 J. Nivre et al.

Table 8. Attachment score (ASU), precision (P), recall (R) and F measure for

selected dependency types for Czech (held-out test set, etest section)

Dependency Type n ASU P R F

Adverbial (Adv) 12948 88.0 75.3 74.2 74.7
Attribute (Atr) 36239 86.9 82.8 83.6 83.2
Subordinate conjunction (AuxC) 2055 75.9 80.5 75.8 78.1
Preposition (AuxP) 12658 72.0 73.7 71.7 72.4
Auxiliary Verb (AuxV) 1747 85.6 91.3 85.1 88.2
Rhematizer (AuxZ) 1962 76.9 70.0 73.9 71.9
Coordination node (Coord) 2716 31.4 39.0 31.0 34.5
Ellipsis handling (ExD) 2529 59.9 43.6 31.2 36.4
Object (Obj) 10480 81.6 66.5 62.6 64.5
Nominal predicate’s nominal part (Pnom) 1668 80.2 63.8 70.3 66.9
Main predicate (Pred) 2892 58.2 45.7 53.1 49.1
Root node (ROOT) 7462 77.0 61.5 77.0 68.4
Subject (Sb) 9364 79.8 68.6 69.8 69.3

Total 108128 80.1 72.8 72.8 72.8

MaltParser used for all languages, constructing only projective graphs, cannot even

in theory achieve an exact match for these sentences. To cope with non-projectivity,

the concept of pseudo-projective parsing was introduced and evaluated in Nivre and

Nilsson (2005). An overview of this approach is given in section 3.4.

Using non-projective training data, i.e., without applying any tree transformations

and encodings, the overall accuracy scores are ASU = 78.5% and ASL = 71.3%. By

simply transforming all non-projective sentences to projective, without encoding the

transformations in dependency type labels (baseline), an improvement is achieved

for both ASU = 79.1% and ASL = 72.0%. This indicates that it helps to make the

input conform to the definition of projectivity, despite the fact that the trees are

distorted and that it is not possible to recover non-projective arcs in the output of

the parser.

In Nivre and Nilsson (2005), three types of encoding schemes were evaluated

in order to recover the non-projective structure by an inverse transformation. The

encodings increase the burden on the parser, since it now also has to distinguish

between pseudo-projective arcs and the original projective arcs. The differences

between different encodings are small and not statistically significant, but all three

encodings increase both labeled and unlabeled attachment score in comparison

both to the projectivized baseline and to the use of non-projective training data (all

differences being significant beyond the 0.01 level according to McNemar’s test).

Compared to the projectivized baseline, the improvement is as high as 1 precentage

point for ASU = 80.1% and 0.8 percentage points for ASL = 72.8%.

A closer look at the 13 most frequent dependency types in table 8 reveals a

larger drop from unlabeled to labeled accuracy compared to other languages such

as English and Chinese. This is partly a result of the more fine-grained set of

dependency types for Czech, but the more flexible word order for major clause

constituents like Sb (subject) and Obj (object) is probably important as well. On

the other hand, dependents of the types AuxC (subordinate conjunction), AuxP

MaltParser 121

(preposition), AuxV (auxiliary verb) or Coord (conjunction) actually have a higher

F measure than ASU , due to higher precision. In contrast to Sb and Obj, these

dependents all come from closed word classes, which often uniquely identifies the

dependency type. In addition, it is worth noting the surprisingly low accuracy for

Coord, lower than for most other languages. This may indicate that the analysis

of coordination in PDT, treating the coordinating conjunction as the head, does

not interact well with the parsing strategy and/or feature models adopted in the

experiments.14

We are not aware of any published results for labeled accuracy, but the unlabeled

attachment score obtained is about 5% lower than the best results reported for a

single parser, using the parser of Charniak (2000), adapted for Czech, with corrective

post-processing to recover non-projective dependencies (Hall and Novák 2005).

4.2.6 Danish

The Danish experiments are based on the Danish Dependency Treebank (DDT),

which is based on a subset of the Danish PAROLE corpus and annotated according

to the theory of Discontinuous Grammar (Kromann 2003). This annotation involves

primary dependencies, capturing grammatical functions, and secondary dependencies,

capturing other relations such as co-reference. Our experiments only concern primary

dependencies, since including secondary dependencies as well would have violated

the Single-Head constraint (cf. section 2.1), but the dependency type set is still

the most fine-grained of all, with 54 distinct dependency types. The annotation is

not restricted to projective dependency graphs, and while only about 1% of all

dependencies are non-projective, the proportion of sentences that contain at least

one non-projective dependency is as high as 15%.

The treebank has been divided into training, validation and test sets using the

same pseudo-randomized splitting method described earlier for Swedish and Chinese.

The training data for the experiments have been projectivized in the same way as

the Czech data, with a similar improvement compared to the use of non-projective

training data. However, none of the encoding schemes for recovering non-projective

dependencies in the output of the parser led to any improvement in accuracy (nor

to any degradation), which is probably due to the fact that the training data for

non-projective dependencies are much more sparse than for Czech.

The best performing model for Danish is a modification of the standard model,

where the feature w(τ1) (the word form of the first lookahead token) is omitted, and

the feature w(h(σ0)) (the word form of the head of the top token) is replaced by the

suffix feature s6(w(h(σ0))). The TiMBL settings are standard. The overall accuracy

scores for Danish are ASU = 85.6% and ASL = 79.5%.15 The relatively wide gap

between unlabeled and labeled accuracy is probably due mainly to the fine-grained

14 In more recent work, Nilsson et al. (2006) have shown how parsing accuracy for
coordination in Czech can be improved by transforming the representations so that
coordinating conjunctions are not treated as heads internally.

15 The labeled attachment score is slightly lower than the one published in Nivre and Hall
(2005), where results were based on the development test set.

122 J. Nivre et al.

Table 9. Attachment score (ASU), precision (P), recall (R) and F measure per

dependency type for Danish, n ≥ 10 (held-out test set, section 0)

Dependency Type n ASU P R F

Elliptic modifier (<MOD>) 11 45.5 0.0 0.0 –
Root (ROOT) 554 91.2 87.5 91.2 89.3
Adjectival object (AOBJ) 17 70.6 50.0 17.6 26.0
Parenthetical apposition (APPA) 20 50.0 53.8 35.0 42.4
Restrictive apposition (APPR) 23 43.5 69.2 39.1 50.0
Adverbial object (AVOBJ) 19 78.9 30.8 21.1 25.0
Conjunct (CONJ) 399 80.7 77.4 77.4 77.4
Coordinator (COORD) 299 75.6 75.4 74.9 75.1
Direct object (DOBJ) 504 90.1 77.5 77.8 77.6
Expletive subject (EXPL) 36 100.0 89.5 94.4 91.9
Indirect object (IOBJ) 13 100.0 66.7 15.4 25.0
List item (LIST) 17 29.4 57.1 23.5 33.3
Locative object (LOBJ) 117 88.0 53.0 45.3 48.8
Modifier (MOD) 1809 77.9 70.6 71.0 70.8
Parenthetical modifier (MODP) 15 26.7 0.0 0.0 –
Modifying proper name (NAME) 13 30.8 22.2 15.4 18.2
Modifying first name (NAMEF) 96 91.7 79.8 90.6 84.9
Nominal object (NOBJ) 1831 92.6 88.5 91.6 90.0
Verbal particle (PART) 21 85.7 62.5 23.8 34.5
Prepositional object (POBJ) 501 79.6 64.4 66.7 65.5
Possessed (POSSD) 171 90.1 91.3 85.4 87.1
Predicative (PRED) 251 86.5 62.0 65.7 63.8
Quotation object (QOBJ) 37 78.4 51.9 75.7 61.6
Relative clause modification (REL) 131 59.5 62.7 56.5 59.4
Subject (SUBJ) 892 93.6 90.7 90.7 90.7
Title of person (TITLE) 19 78.9 63.6 73.7 68.3
Temporal adjunct (TOBJ) 16 50.0 62.5 31.3 41.7
Verbal object (VOBJ) 635 95.1 92.7 93.4 93.0
Direct quotation (XPL) 12 0.25 0.0 0.0 –

Total 8530 85.6 79.5 79.5 79.5

nature of the dependency type set in combination with a relatively small training

data set.

Table 9 shows the unlabeled attachment score (ASU), precision (P), recall (R)

and F measure (F) for dependency types occurring at least 10 times in the test

set. It is clear that low-frequency types (n < 100) generally have very low labeled

precision and recall, despite sometimes having a quite high unlabeled accuracy. A

striking example is indirect object (IOBJ), which has perfect unlabeled accuracy but

only 15% labeled recall. Concentrating on types that occur at least 100 times in

the test set, we see a pattern that is very similar to the one observed for the closely

related language Swedish, despite important differences in the style of annotation.

Thus, we can observe a very high accuracy (F ≥ 90) for dependencies involving

function words, notably VOBJ, which includes dependencies linking verbs to function

words (auxiliary verb → main verb, marker → infinitive, complementizer → verb),

and NOBJ, which includes dependencies linking prepositions and determiners to

nominals, but also for subjects, both normal subjects (SUBJ) and the much less

frequent expletive subjects (EXPL), and roots (ROOT). Furthermore, we see that

other arguments of the verb (DOBJ, IOBJ, LOBJ, PRED) have a high unlabeled

accuracy but (sometimes substantially) lower labeled accuracy, while the generic

MaltParser 123

adjunct type MOD has lower accuracy, both labeled and unlabeled. Finally, both

Danish and Swedish have comparatively high accuracy for coordination, which

in Danish is split into CC (conjunct → coordinator) and COORD (conjuncti →
conjuncti+1). Compared to the results for Czech, this indicates that an analysis of

coordination where a conjunct, rather than the coordinator, is treated as the head is

easier to cope with for the parser.

McDonald and Pereira (2006) report an unlabeled attachment score for primary

dependency types in DDT of 86.8%.16 However, these results are based on gold

standard part-of-speech tags, whereas our experiments use automatically assigned

tags with an accuracy rate of 96.3%. Replicating the experiment with gold standard

tags, using the same feature model and parameter settings, results in an unlabeled

attachment score of 87.3%, which indicates that MaltParser gives state-of-the-art

performance for Danish.

4.2.7 Dutch

The Dutch experiments are based on the Alpino Treebank (Beek et al. 2003). The

text material (186k non-punctuation tokens) consists primarily of two sections of

newspaper text (125k and 21k), plus two smaller segments containing questions (21k)

and (in part) manually constructed sentences for parser development and annotation

guide examples (19k). As the latter type of material is atypical, it is only used for

training purposes, whereas the smaller newspaper text section is used as held out

material for final testing.

The syntactic annotation of the Alpino Treebank is a mix of constituent structure

and dependency relations, nearly identical to the syntactic annotation of the Spoken

Dutch Corpus (Wouden et al. 2002). It was converted to a pure dependency structure

employing a head percolation table, removing secondary relations as indicated by

traces. Multi-word units, consisting of a sequence of words without any further

syntactic analysis, were concatenated into a single word using underscores. Finally,

non-projective structures were projectivized using the same baseline procedure as for

Danish (i.e., without extending the dependency type labels or attempting to recover

non-projective dependencies in the output of the parser). Since the original part-

of-speech tags in the Alpino Treebank are coarse-grained and lack any additional

feature information besides the word class, all tokens were retagged with the memory-

based tagger for Dutch (Daelemans et al. 2003).

Ten-fold cross-validation was used to manually optimize the TiMBL settings.

Experimentation confirmed that the standard settings with MVDM, no feature

weighting, and distance weighted class voting generally performs best. However,

choosing a higher value for k (k = 10) usually gives an improvement of one to

two percentage points for Dutch. The results obtained on held out data using

the standard model are ASU = 84.7% and ASL = 79.2%. The relatively large

16 It should be pointed out that McDonald and Pereira (2006) also consider secondary
dependency arcs, which are beyond the reach of MaltParser in its current configuration,
and that the result reported is actually the highest precision of their parser when restricted
to primary dependencies.

124 J. Nivre et al.

Table 10. Attachment score (ASU), precision (P), recall (R) and F measure per

dependency type for Dutch (held-out test set)

Dependency Type n ASU P R F

Apposition (APP) 299 73.6 78.8 71.9 75.2
Body of embedded clause (BODY) 88 85.8 83.9 84.3 84.1
Conjunct (CNJ) 997 70.0 72.8 68.6 70.6
Coordinator (CRD) 9 44.4 28.6 22.2 25.0
Determiner (DET) 3239 97.2 96.1 96.9 97.0
Closing element of circumposition (HDF) 13 53.8 70.0 53.8 60.8
Locative/directional complement (LD) 239 68.6 40.2 21.3 27.9
Measure complement (ME) 33 72.7 69.2 54.5 61.0
Modifier (MOD) 5069 78.3 71.1 73.9 72.5
Object of adjective or adverb (OBCOMP) 51 74.5 90.0 52.9 66.6
Direct object (OBJ1) 3392 90.3 86.0 86.4 86.2
Indirect object (OBJ2) 56 80.4 77.8 12.5 21.5
Prepositional complement (PC) 344 73.8 51.6 28.5 36.7
Suppletive object (POBJ1) 14 78.6 33.3 35.7 34.5
Predicative complement (PREDC) 428 79.4 65.6 56.1 60.5
Predicate modifier (PREDM) 61 65.6 54.5 9.8 16.6
Root (ROOT) 1874 82.7 70.8 82.7 76.3
Obligatory reflexive object (SE) 53 83.0 72.2 73.6 72.9
Subject (SU) 186 85.2 80.8 78.1 79.4
Suppletive subject (SUP) 19 89.5 45.0 47.4 46.2
Separable verbal particle (SVP) 259 85.3 69.6 61.8 65.5
Verbal complement (VC) 1074 89.0 80.4 85.6 82.9

Total 20263 84.7 79.2 79.2 79.2

gap between the labeled and unlabeled scores may be attributed to the relatively

fine-grained set of dependency labels. Table 10 gives unlabeled attachment score

(ASU), labeled precision (P), recall (R) and F measure (F) for individual dependency

types. We can observe a general trend towards better scores for the more frequent

dependency labels, but there are notable exceptions such as the relatively high score

for the infrequently occurring SE (reflexive object) and the low score on the more

frequent PC (prepositional complement) and LD (locative/directional complement).

As for several other languages, we can distinguish three groups with high, medium

and low F measures respectively. The high score set (F > 80%) includes the

dependency relations indicated by closed class words: DET (determiner → noun),

VC (auxiliary verb → main verb), and BODY (complementizer → verb). Somewhat

surprisingly, this group also includes OBJ1 (direct object), perhaps because this is

the second most frequent dependency relation.

The low score group (F < 60%) includes the rather infrequent suppletive

subject (SUP) and object (POBJ1). Furthermore, it involves four classes which

are canonically expressed in the form of a prepositional phrase – PC (prepositional

complement), OBJ2 (indirect object), LD (locative/directional complement) and

PREDM (predicate modifier) – and where the sometimes subtle distinction is often

of a semantic rather than a syntactic nature. The fact that coordinator (CRD) is

also in the low score group is somewhat counter-intuitive, because it is indicated

by a closed word class, normally the word en ‘and’, but the result is consistent with

MaltParser 125

the low accuracy for coordination in Czech, given that both treebanks treat the

coordinating conjunction as the head of a coordinate structure.

The remaining 11 types belong to the medium score group (60% < F < 80%),

which includes the by far most frequent class MOD (modifier). It is interesting to

note that the scores for a conceptually difficult class like APP (apposition) are still

quite good. The same goes for the potentially highly ambiguous CONJ (conjunct),

although there seems to be a trade-off here with the low scores noted for CRD

earlier.

The Alpino parser is a rule-based, HPSG-style parser that is currently the state-

of-art parser for Dutch (Bouma et al. 2001). It has an extensive and detailed lexicon

(including, e.g., subcategorization information) and a MaxEnt-based disambiguation

module. Its output is in the same format as the Alpino Treebank. We used it to

parse the held out material and converted the parse trees to dependency structures,

using exactly the same procedure as for converting the treebank, which includes

transforming non-projective to projective structures. Evaluation resulted in the scores

ASU = 93.2% and ASL = 91.2%. Clearly, there is still a substantial gap between the

two parsers. Also, the Alpino parser provides additional information, e.g., traces and

non-projective analyses, which is ignored here. Yet, given all the effort invested in

building the Alpino grammar, lexicon, and disambiguation strategy, it is interesting

to see that its performance can be approximated by a purely inductive approach

using fairly limited amounts of data.

4.2.8 German

The experiments for German are based on the Tübingen Treebank of Written

German (TüBa-D/Z) (Telljohann et al. 2005). The treebank is based on issues of the

German daily newspaper ‘die tageszeitung’ (taz) that appeared in April and May of

1999. The annotation of the treebank is constituency-based, but it is augmented by

function-argument structure on all levels, which allows a straightforward conversion

to dependencies for most phenomena. Heuristics are used only for apposition,

embedded infinitive clauses, and nominal postmodifications. Long-distance relations,

which are annotated in the constituency model via special labels, are translated into

non-projective dependencies. The set of dependency types is modeled after the one

used for the Constraint Dependency Grammar for German (Foth et al. 2004), a

manually written dependency grammar for German.

The best performing model for German modifies the standard model by omitting

the two lexical features w(h(σ0)) and w(τ1) and by adding the part-of-speech of

an additional stack token p(σ2). The TiMBL settings for German deviate from the

standard settings by using k = 13 and voting based on inverse linear weighting

(IL).

The overall accuracy scores for German are ASU = 88.1% and ASL = 83.4%.

The (unlabeled) results are comparable to results by Foth et al. (2004), who reached

89.0% accuracy when parsing the NEGRA treebank (Skut et al. 1997), another

treebank for German, which is also based on newspaper texts (but which uses a

different constituency-based annotation scheme). The labeled results are considerably

126 J. Nivre et al.

Table 11. Attachment score (ASU), precision (P), recall (R) and F measure for

selected dependency types for German (mean of 10-fold cross-validation, frequency

counts rounded to whole integers)

Dependency Type n ASU P R F

Adverbial (ADV) 2762 80.5 78.7 79.3 79.0
Determiner (DET) 4485 99.1 99.1 99.0 99.0
Genitive modifier (GenMOD) 571 79.5 59.1 66.3 62.5
Accusative Object (AccOBJ) 1466 82.4 66.6 73.4 69.8
Dative Object (DatOBJ) 219 79.0 62.4 16.4 26.0
Genitive Object (GenOBJ) 4 78.0 16.7 6.8 9.7
Predicate (PRED) 549 84.8 69.6 64.3 66.8
PP complement (PPOBJ) 399 83.1 54.7 41.6 47.3
Relative clause (RelCL) 241 54.1 56.9 52.6 54.7
Subject (SUBJ) 2931 92.0 85.7 86.3 86.0

Total 32555 88.1 83.4 83.4 83.4

higher than constituency parsing results reported for German, which reach a labeled

F measure of 75.3% when constituent nodes also include grammatical functions

(Kübler et al. 2006).

Table 11 gives unlabeled attachment scores (ASU), labeled precision (P), recall

(R), and F measure (F) for selected dependency types. The overall trends are very

similar to what we have observed for other languages, notably Germanic languages

like Swedish and Danish. For example, both determiners (DET) and adverbials

(ADV) have labeled and unlabeled accuracy at about the same level (although

considerably higher for DET than for ADV), while arguments of the verb (AccOBJ,

DatOBJ, GenOBJ, PRED and PPOBJ) have substantially better unlabeled than

labeled accuracy. One difference, compared to Danish and Swedish, is that the lower

labeled accuracy also affects subjects (SUBJ), which is probably a reflection of the

fact that German exhibits freer word order thanks to case marking. The relatively

low labeled accuracy for different case-marked arguments is also an indication that

the parser would benefit from morphological information, which is currently not

included in the German part-of-speech tags.

Contrary to expectations that, with growing data size, adding more lexical features

would improve performance, experiments with all the lexical features of the standard

model showed a decrease in performance by 1.5 percentage points. The hypothesis

that this decrease is due to data sparseness is refuted by experiments with only 2000

sentences for training, where the decrease in performance is only 7.5%. These results

are consistent with those of Dubey and Keller (2003), who found that lexicalizing

a PCFG grammar for NEGRA results in a decrease in performance, although it

should be remembered that the first two lexical features are beneficial in the case of

MaltParser.

4.2.9 Italian

The Italian treebank used in the experiments is the Turin University Treebank

(TUT) (Bosco 2004), consisting of 1500 sentences and 41771 tokens. It is balanced

MaltParser 127

Table 12. Attachment score (ASU), precision (P), recall (R) and F measure per

dependency type for Italian (mean of 10-fold cross-validation, frequency counts rounded

to whole integers)

Dependency Type n ASU P R F

Apposition (APPOSITION) 69 44.4 54.2 47.8 50.8
Argument (ARG) 1351 95.0 92.7 94.5 93.6
Auxiliary verb (AUX) 96 92.1 90.5 94.2 92.3
Part of expression (CONTIN) 75 86.9 78.2 54.4 64.2
Coordination (COORDINATOR) 271 66.6 63.6 63.6 63.6
Other (DEPENDENT) 1 40.0 0.0 0.0 –
Reflexive complement (EMPTYCOMPL) 15 94.5 35.7 50.0 41.7
Indirect complement (INDCOMPL) 82 85.9 70.4 47.5 56.7
Indirect object (INDOBJ) 18 81.5 33.3 33.3 33.3
Interjection (INTERJECTION) 1 20.0 0.0 0.0 –
Object (OBJ) 222 84.9 33.3 33.3 33.3
Predicative complement (PREDCOMPL) 52 78.4 54.3 37.3 44.2
Restrictive modifier (RMOD) 1013 74.3 69.5 70.2 69.8
Subject (SUBJ) 256 75.5 64.8 58.6 61.5
Root (TOP) 150 75.5 63.5 77.2 69.7
Adverbial extraction (VISITOR) 13 74.6 0.0 0.0 –

Total 3683 82.9 75.7 75.7 75.7

over genres with 60% newspaper text, 30% legal text, and 10% from novels and

academic literature. The dependency annotation involves traces in order to avoid

non-projective structures, although there is in fact a certain number of non-projective

trees in the treebank.

The treebank has been converted to the format required by MaltParser without

significant loss of linguistic information, as described in Chanev (2005), replacing

traces if necessary by (possibly non-projective) dependency arcs. The dependency

tag set was reduced from 283 to 17 distinct tags, keeping only information about

syntactic dependency relations. The training data were projectivized using the same

procedure as for Danish and Dutch and tagged for part-of-speech using TnT

(Brants 2000). All experiments were performed using 10-fold cross-validation with

a randomized split.

The best performing feature model for Italian is the standard model, although

several simpler models give nearly the same results. The accuracy scores for Italian

are ASU = 82.9% and ASL = 75.7%, and table 12 shows the accuracy obtained for

different dependency types. It is striking that there are only two types that obtain

a really high accuracy in the Italian data, the type ARG, which is usually used for

relations between articles and nouns or prepositions and articles, and the type AUX,

which is used for auxiliary verbs. While these two types have a labeled F measure

well above 90%, no other type has a score higher than 70%. There is also a set

of low-frequency types that all have zero recall and precision. The relatively low

labeled accuracy for most dependency types in Italian is undoubtedly due partly to

sparse data, but it is also relevant that the inventory of dependency types is more

semantically oriented than for most other languages.

For Italian there are not any published results for statistical dependency parsing

except the preliminary results for MaltParser reported in Chanev (2005). Compared

128 J. Nivre et al.

to Corazza et al. (2004), where state-of-the-art constituency parsers were tested on

the Italian Syntactic-Semantic Treebank (Montemagni et al. 2003), an improvement

seems to have been achieved, although it is not straightforward to compare

evaluation metrics for constituency and dependency parsing. A more relevant

comparison is the rule-based parser of Lesmo et al. (2002), which uses the TUT

dependency type set and which has been reported to achieve a labeled attachment

score of 76.65% when evaluated during the development of the treebank. Since this

is within a percentage point of the results reported in this article and the evaluation

is based on the same kind of data, it seems clear that MaltParser achieves highly

competitive results for Italian.

4.2.10 Turkish

The Turkish Treebank (Oflazer et al. 2003), created by Metu and Sabancı Universities

is used in the experiments for Turkish. This treebank is composed of 5635 sentences,

annotated with dependency structures, of which 7.2% are non-projective (not

counting punctuation that is not connected to a head). As can be seen from table 1,

even though the number of sentences in the Turkish Treebank is in the same range

as for Danish, Swedish and Bulgarian, the number of words is considerably smaller

(54k as opposed to 70–100k for the other treebanks). This significant difference

arises from the very rich morphological structure of the language due to which a

word may sometimes correspond to a whole sentence in another language.

As a result of their agglutinative morphology, Turkish words can change their

main part-of-speech after the concatenation of multiple suffixes. This structure is

represented in the treebank by dividing words into inflectional groups (IG). The

root and derived forms of a word are represented by different IGs separated from

each other by derivational boundaries (DB). Each IG is annotated with its own

part-of-speech and inflectional features, as illustrated in the following example:17

okulunuzdaydı

(he was at your school)

okulunuzda DB ydı

okul+Noun+A3sg+P2pl+Loc︸ ︷︷ ︸
IG1

DB +Verb+Zero+Past+A3sg︸ ︷︷ ︸
IG2

The part-of-speech of the stem of the word okulunuzdaydı is a noun, from which a

verb is derived in a separate IG. In the treebank, dependencies hold between specific

IGs of the dependent and head word.

For the parsing experiments, we have concatenated IGs into word forms to

get a word-based tokenization and used a reduced version of the part-of-speech

tagset given by the treebank, very similar to the reduced tagset used in the parser

of Eryiğit and Oflazer (2006). For each word, we use the part-of-speech of each

IG and in addition include the case and possessive information if the stem is a

noun or pronoun. Using this approach, the tag of the word okulunuzdaydı becomes

17 A3sg = 3sg number agreement, P2pl = 2pl possessive agreement, Loc = locative case.

MaltParser 129

Table 13. Attachment score (ASU), precision (P), recall (R) and F measure per

dependency type for Turkish (mean of 10-fold cross-validation, frequency counts

rounded to whole integers)

Dependency Type n ASU P R F

ABLATIVE.ADJUNCT 52 82.8 58.8 54.7 56.7
APPOSITION 190 40.6 8.5 5.9 7.0
CLASSIFIER 205 87.0 72.8 70.4 71.6
COLLOCATION 5 41.2 25.0 5.9 9.5
COORDINATION 81 53.6 56.0 48.6 52.0
DATIVE.ADJUNCT 136 86.8 55.0 54.9 54.9
DETERMINER 195 91.1 83.7 85.8 84.7
EQU.ADJUNCT 2 62.5 0.0 0.0 –
ETOL 1 70.0 0.0 0.0 –
FOCUS.PARTICLE 2 78.3 0.0 0.0 –
INSTRUMENTAL.ADJUNCT 27 71.6 34.7 18.8 24.4
INTENSIFIER 90 93.9 82.9 86.0 84.4
LOCATIVE.ADJUNCT 114 73.0 59.5 58.1 58.8
MODIFIER 1168 76.5 68.7 68.2 68.4
NEGATIVE.PARTICLE 16 90.0 89.6 80.6 84.9
OBJECT 796 88.3 68.6 69.4 69.0
POSSESSOR 152 80.0 81.7 69.9 75.3
QUESTION.PARTICLE 29 93.8 85.9 80.2 83.0
RELATIVIZER 8 91.8 54.5 49.4 51.8
ROOT 2 0.0 0.0 0.0 –
SENTENCE.MODIFIER 59 52.4 33.8 47.6 39.5
SENTENCE 725 91.2 84.4 89.2 86.7
SUBJECT 448 72.0 50.7 50.8 50.7
VOCATIVE 24 51.0 20.4 19.1 19.7

Total 4357 81.6 69.0 69.0 69.0

Noun+P2pl+Loc+Verb. Even after this reduction, the tagset contains 484 distinct

tags, making it by far the biggest tagset used in the experiments.

The best performing model for Turkish omits five of the features of the standard

model, three part-of-speech features (p(σ1), p(τ2), p(τ3)) and two lexical features

(w(h(σ0)), w(τ1)). In addition, the stem of a word is used as its word form in lexical

features. This leads to an accuracy of ASU = 81.6% and ASL = 69.0%. These are

the mean results obtained after 10-fold cross-validation.

Table 13 gives unlabeled attachment scores (ASU), labeled precision (P), recall

(R), and F measure (F) for individual dependency types. First of all, we see that

types with a frequency below 5 in the test set have very low labeled accuracy, which

is consistent with results reported for other languages earlier. Secondly, we may

note that the frequency of tokens analyzed as roots (ROOT) is very low, which is

a consequence of the fact that punctuation tokens are excluded in evaluation, since

final punctuation is generally treated as the root node of a sentence in the Turkish

Treebank.18 Therefore, the closest correspondent to ROOT for other languages

is SENTENCE, which is the type assigned to a token dependent on the final

punctuation token (normally the final verb of the sentence) and which has a very

18 The few roots that do occur are unconnected words that give rise to non-projective
dependency structures.

130 J. Nivre et al.

high accuracy, on a par with the ROOT type for most other languages. Finally,

there is a clear tendency that dependency types with high accuracy (INTENSI-

FIER, QUESTION.PARTICLE, RELATIVIZER, SENTENCE, DETERMINER,

NEGATIVE.PARTICLE) are types that are generally adjacent to their head,

whereas types with lower accuracy (COORDINATION, SENTENCE.MODIFIER,

APPOSITION, COLLOCATION, VOCATIVE) are types that are either more

distant or hard to differentiate from other types.

The only comparable results for Turkish are for the unlexicalized dependency

parser of Eryiğit and Oflazer (2006). These results are based on a selected subset

of the treebank sentences containing only projective dependencies with the heads

residing on the right side of the dependents and the main evaluation metrics are

based on IGs rather than words, but word-based scores are presented for the purpose

of comparison with a top score of ASU = 81.2%. Applying MaltParser with the

best feature model to the same subset of the treebank resulted in an unlabeled

attachment score of 84.0%, which is a substantial improvement.19

4.3 Discussion

Although MaltParser achieves an unlabeled dependency accuracy above 80% for all

languages, there is also a considerable range of variation, which seems to correlate

fairly well with the linguistic dimensions of morphological richness and word order

flexibility, exemplified by high accuracy for English and lower accuracy for Czech,

which represent extreme positions on these scales. Given that English and Czech are

also the languages with the largest data sets, the linguistic properties seem to be more

important than the amount of data available. Another influencing factor is the level

of detail of the dependency annotation, as given by the number of dependency types

used, where Czech has a more fine-grained classification than English. However,

Danish has an even more fine-grained classification but still comes out with higher

parsing accuracy than Czech, despite a much smaller training data set.

If morphological richness and word order flexibility are indeed the most important

factors determining parsing accuracy, the results for German are surprisingly good,

given that German has both richer morphology and freer word order than English.

On the other hand, the results for Chinese are on the low side. This points to another

important factor, namely the complexity of the sentences included in the treebank

data, which can be roughly approximated by considering the mean sentence length in

the sample. Here we see that Chinese has the second highest value of all languages,

while the sentence length for German is at least considerably lower than for English.

At the same time, we have to remember that the number of words per sentence is

not strictly comparable between languages with different morphological properties,

as illustrated especially by the data for Turkish (cf. section 4.2.10).

19 Strictly speaking, the subset used by Eryiğit and Oflazer (2006) only contains non-crossing
dependencies, although it does contain punctuation that is not connected to other tokens.
In order to make these graphs projective, the punctuation tokens were attached to the
immediately following word. However, since punctuation is excluded in all evaluation
scores, this nevertheless seems like a fair comparison.

MaltParser 131

Comparing individual dependency types across languages is very difficult, given the

diversity in annotation, but a few recurrent patterns are clearly discernible. The first

is that dependencies involving function words generally have the highest accuracy.

The second is that core arguments of the verb often have high unlabeled accuracy

but lower labeled accuracy, with the possible exception of subjects, which have high

labeled accuracy in languages where they are distinguished configurationally. The

third is that the parsing accuracy for coordinate structures tends to be higher if

the dependency analysis treats conjuncts, rather than coordinating conjunctions, as

heads.

Needless to say, a more detailed error analysis will be needed before we can

draw any reliable conclusions about the influence of different factors, so the

tentative conclusions advanced here are best regarded as conjectures to be cor-

roborated or refuted by future research. However, given the fact that unlabeled

dependency accuracy is consistently above 80%, the parsing methodology has

proven to be relatively insensitive to differences in language typology as well as in

annotation schemes. Moreover, respectable results can be obtained also with fairly

limited amounts of data, as illustrated in particular by the results for Italian and

Turkish.

Finally, we note that MaltParser achieves state-of-the-art performance for most

of the languages investigated in this article, although the possibility of comparison

differs widely between languages. For English, Chinese, Czech and Dutch, parsing

accuracy does not quite reach the highest level, but the difference is never more than

about 5% (slightly more for Dutch).20

5 Conclusion

We have presented MaltParser, a data-driven system for dependency parsing that

can be used to construct syntactic parsers for research purposes or for practical

language technology applications. Experimental evaluation using data from ten

different languages shows that MaltParser generally achieves good parsing accuracy

without language-specific enhancements and with fairly limited amounts of training

data. Unlabeled dependency accuracy is consistently above 80% and the best results

are normally within a 5% margin from the best performing parsers, where such

comparisons are possible. MaltParser is freely available for research and educational

purposes.

Acknowledgments

We want to express our gratitude for assistance with data sets, conversions and

many other things to Christina Bosco, Yuchang Cheng, Yuan Ding, Jan Hajič,

20 More recent work using SVM, rather than MBL, for discriminative learning has shown
that this gap can be closed, and in the recent shared task of multilingual dependency
parsing at the Tenth Conference on Computational Natural Language Learning (CoNLL-
X), MaltParser was one of the two top performing systems (Buchholz and Marsi 2006;
Nivre et al. 2006; Hall 2006).

132 J. Nivre et al.

Matthias Trautner Kromann, Alberto Lavelli, Haitao Liu, Yuji Matsumoto, Ryan

McDonald, Kemal Oflazer, Petya Osenova, Kiril Simov, Yannick Versley, Hiroyasu

Yamada, and Daniel Zeman. We are also grateful for the support of GSLT (Swedish

National Graduate School of Language Technology), TÜBİTAK (The Scientific

and Technical Research Council of Turkey), and The Swedish Research Council.

Finally, we want to thank our three anonymous reviewers for insightful comments

and suggestions that helped us improve the final version of the article.

References

Van der Beek, L., Bouma, G., Malouf, R. and Van Noord, G. 2003. The Alpino Dependency

Treebank. In Gaustad, T. (ed.) Computational Linguistics in the Netherlands 2002. Selected

Papers from the Thirteenth CLIN Meeting, pp. 8–22. Rodopi.

Berwick, R. C. 1985. The Acquisition of Syntactic Knowledge. MIT Press.

Bikel, D. and Chiang, D. 2000. Two statistical parsing models applied to the Chinese Treebank.

In Proceedings of the Second Chinese Language Processing Workshop, pp. 1–6.

Black, E. and Garside, R. and Leech, G. (eds.) 1993. Statistically-Driven Computer Grammars

of English: The IBM/Lancaster Approach. Rodopi.

Black, E., Jelinek, F., Lafferty, J., Magerman, D., Mercer, R. and Roukos, S. 1992. Towards

history-based grammars: Using richer models for probabilistic parsing. In Proceedings of

the 5th DARPA Speech and Natural Language Workshop, pp. 31–37.

Blaheta, D. and Charniak, E. 2000. Assigning function tags to parsed text. In Proceedings

of the First Meeting of the North American Chapter of the Association for Computational

Linguistics (NAACL), pp. 234–240.

Böhmová, A., Hajič, J., Hajičová, E. and Hladká, B. 2003. The Prague Dependency Treebank:

A three-level annotation scenario. In Abeillé, A. (ed.), Treebanks: Building and Using Parsed

Corpora, pp. 103–127. Dordrecht: Kluwer.

Bosco, C. 2004. A Grammatical Relation System for Treebank Annotation. PhD thesis, Turin

University.

Bouma, G., Van Noord, G. and Malouf, R. 2001. Alpino: Wide-coverage computational

analysis of Dutch. In Daelemans, W., Sima’an, K., Veenstra, J. and Zavrel, J. (eds.)

Computational Linguistics in the Netherlands 2000. Selected Papers from the Eleventh CLIN

Meeting, pp. 45-59. Rodopi.

Brants, T. 2000. TnT – a statistical part-of-speech tagger. In Proceedings of the Sixth Applied

Natural Language Processing Conference (ANLP’2000), pp. 224–231.

Buchholz, S. and Marsi, E. 2006. CoNLL-X shared task on multilingual dependency parsing.

In Proceedings of the Tenth Conference on Computational Natural Language Learning

(CoNLL), pp. 149–164.

Chanev, A. 2005. Portability of dependency parsing algorithms – an application for Italian. In

Proceedings of the Fourth Workshop on Treebanks and Linguistic Theories (TLT), pp. 29–40.

Chang, C.-C. and Lin, C.-J. 2001. LIBSVM: A library for support vector machines. Software

available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Charniak, E. 2000. A Maximum-Entropy-Inspired Parser. In Proceedings of the First Meeting

of the North American Chapter of the Association for Computational Linguistics (NAACL),

pp. 132–139.

Charniak, E. and Johnson, M. 2005. Coarse-to-fine n-best parsing and discriminative MaxEnt

reranking. In Proceedings of the 43rd Annual Meeting of the Association for Computational

Linguistics (ACL), pp. 173–180.

Cheng, Y., Asahara, M. and Matsumoto, Y. 2004. Deterministic dependency structure analyzer

for Chinese. In Proceedings of the First International Joint Conference on Natural Language

Processing (IJCNLP), pp. 500–508.

MaltParser 133

Cheng, Y., Asahara, M. and Matsumoto, Y. 2004. Machine learning-based dependency

analyzer for Chinese. In Proceedings of International Conference on Chinese Computing

(ICCC), pp. 66–73.

Cheng, Y., Asahara, M. and Matsumoto, Y. 2005. Chinese deterministic dependency analyzer:

Examining effects of global features and root node finder. In Proceedings of the Fourth

SIGHAN Workshop on Chinese Language Processing, pp. 17–24.

Collins, M. 1997. Three generative, lexicalised models for statistical parsing. In Proceedings of

the 35th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 16–23.

Collins, M. 1999. Head-Driven Statistical Models for Natural Language Parsing. PhD thesis,

University of Pennsylvania.

Collins, M. 2000. Discriminative reranking for natural language parsing. In Proceedings of

the 17th International Conference on Machine Learning, pp. 175–182.

Collins, M. and Duffy, N. 2002. New ranking algorithms for parsing and tagging: Kernels over

discrete structures, and the voted perceptron. In Proceedings of the 40th Annual Meeting of

the Association for Computational Linguistics (ACL), pp. 263–270.

Collins, M., Hajič, J., Ramshaw, L. and Tillmann, C. 1999. A statistical parser for Czech.

In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics

(ACL), pp. 505–512.

Collins, M. and Duffy, N. 2005. Discriminative reranking for natural language parsing.

Computational Linguistics 31(1), 25–70.

Corazza, A., Lavelli, A., Satta, G. and Zanoli, R. 2004. Analyzing an Italian treebank with

state-of-the-art statistical parsers. In Proceedings of the Third Workshop on Treebanks and

Linguistic Theories (TLT), pp. 39–50.

Covington, M. A. 2001. A fundamental algorithm for dependency parsing. In Proceedings of

the 39th Annual ACM Southeast Conference, pp. 95–102.

Daelemans, W. and Van den Bosch, A. 2005. Memory-Based Language Processing. Cambridge

University Press.

Daelemans, W., Zavrel, J., Van den Bosch, A. and Van der Sloot, K. 2003. MBT: Memory

Based Tagger, version 2.0, Reference Guide. ILK Technical Report 03-13, Tilburg

University.

Dubey, A. and Keller, F. 2003. Probabilistic parsing for German using sister-

head dependencies. In Proceedings of the 41st Annual Meeting of the Association for

Computational Linguistics (ACL), pp. 96–103.

Einarsson, J. 1976. Talbankens skriftspr̊akskonkordans. Lund University, Department of

Scandinavian Languages.

Eryiğit, G. and Oflazer, K. 2006. Statistical dependency parsing of Turkish. In Proceedings

of the 11th Conference of the European Chapter of the Association for Computational

Linguistics, pp. 89–96.

Foth, K., Daum, M. and Menzel, W. 2004. A broad-coverage parser for German based

on defeasible constraints. In KONVENS 2004, Beiträge zur 7. Konferenz zur Verarbeitung

natürlicher Sprache, pp. 45–52.

Hajič, J., Vidova Hladka, B., Panevová, J., Hajičová, E., Sgall, P. and Pajas, P. 2001. Prague

Dependency Treebank 1.0. LDC, 2001T10.

Hall, J. 2006. MaltParser – An Architecture for Labeled Inductive Dependency Parsing.

Licentitate thesis, Växjö University.

Hall, K. and Novák, V. 2005. Corrective modeling for non-projective dependency parsing. In

Proceedings of the 9th International Workshop on Parsing Technologies (IWPT), pp. 42–52.

Hudson, R. A. 1990. English Word Grammar. Blackwell.

Johnson, M., Geman, S., Canon, S., Chi, Z. and Riezler, S. 1999. Estimators for stochastic

“unification-based” grammars. In Proceedings of the 37th Annual Meeting of the Association

for Computational Linguistics (ACL), pp. 535–541.

Kay, M. 2000. Guides and oracles for linear-time parsing. In Proceedings of the 6th

International Workshop on Parsing Technologies (IWPT), pp. 6–9.

134 J. Nivre et al.

Kromann, M. T. 2003. The Danish Dependency Treebank and the DTAG treebank tool. In

Proceedings of the Second Workshop on Treebanks and Linguistic Theories (TLT), pp. 217–

220. Växjö University Press.

Kübler, S., Hinrichs, E. W. and Maier, W. 2006. Is it really that difficult to parse German?

In Proceedings of the Conference on Empirical Methods in Natural Language Processing

(EMNLP), pp. 111–119.

Kudo, T. and Matsumoto, Y. 2002. Japanese dependency analysis using cascaded chunking.

In Proceedings of the Sixth Workshop on Computational Language Learning (CoNLL),

pp. 63–69.

Lesmo, L., Lombardo, V. and Bosco, C. 2002. Treebank development: The TUT approach.

In Sangal, R. and Bendre, S. M. (eds.) Recent Advances in Natural Language Processing,

pp. 61–70. New Delhi: Vikas Publishing House.

Levy, R. and Manning, C. 2003. Is it harder to parse Chinese, or the Chinese Treebank?

In Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics

(ACL), pp. 439–446.

Lin, D. 1998. A dependency-based method for evaluating broad-coverage parsers. Natural

Language Engineering 4, 97–114.

Magerman, D. M. 1995. Statistical decision-tree models for parsing. In Proceedings

of the 33rd Annual Meeting of the Association for Computational Linguistics (ACL),

pp. 276–283.

Marinov, S. and Nivre, J. 2005. A data-driven parser for Bulgarian. In Proceedings of the

Fourth Workshop on Treebanks and Linguistic Theories (TLT), pp. 89–100.

Maruyama, H. 1990. Structural disambiguation with constraint propagation. In Proceedings

of the 28th Meeting of the Association for Computational Linguistics (ACL), pp. 31–38.

McDonald, R. and Pereira, F. 2006. Online Learning of Approximate Dependency Parsing

Algorithms. In Proceedings of the 11th Conference of the European Chapter of the

Association for Computational Linguistics (EACL), pp. 81–88.

Mel’čuk, I. 1988. Dependency Syntax: Theory and Practice. State University of New York

Press.

Montemagni, S., Barsotti, F., Battista, M., Calzolari, N., Corazzari, O., Lenci, A., Zampolli, A.,

Fanciulli, F., Massetani, M., Raffaelli, R., Basili, R., Pazienza, M. T., Saracino, D., Zanzotto,

F., Pianesi, F., Mana, N. and Delmonte, R. 2003. Building the Italian syntactic-semantic

treebank. In Anne Abeillé (ed.) Building and Using Syntactically Annotated Corpora, pp. 189–

210. Dordrecht: Kluwer.

Nilsson, J., Nivre, J. and Hall, J. 2006. Graph transformations in data-driven dependency

parsing. In Proceedings of the 21st International Conference on Computational Linguistics

and the 44th Annual Meeting of the Association for Computational Linguistics, pp. 257–264.

Nivre, J. 2003. An efficient algorithm for projective dependency parsing. In Proceedings of the

8th International Workshop on Parsing Technologies (IWPT), pp. 149–160.

Nivre, J. 2004. Incrementality in deterministic dependency parsing. In Proceedings of the

Workshop on Incremental Parsing: Bringing Engineering and Cognition Together (ACL),

pp. 50–57.

Nivre, J. 2006. Inductive Dependency Parsing. Springer.

Nivre, J. and Hall, J. 2005. MaltParser: A language-independent system for data-driven

dependency parsing. In Proceedings of the Fourth Workshop on Treebanks and Linguistic

Theories (TLT), pp. 137–148.

Nivre, J., Hall, J. and Nilsson, J. 2004. Memory-based dependency parsing. In Proceedings of

the 8th Conference on Computational Natural Language Learning (CoNLL), pp. 49–56.

Nivre, J., Hall, J., Nilsson, J., Eryiğit, G. and Marinov, S. 2006. Labeled pseudo-projective

dependency parsing with support vector machines. In Proceedings of the Tenth Conference

on Computational Natural Language Learning (CoNLL), pp. 221–225.

Nivre, J. and Nilsson, J. 2005. Pseudo-projective dependency parsing. In Proceedings of the

43rd Annual Meeting of the Association for Computational Linguistics (ACL), pp. 99–106.

MaltParser 135

Nivre, J. and Scholz, M. 2004. Deterministic dependency parsing of English text. In

Proceedings of the 20th International Conference on Computational Linguistics (COLING),

pp. 64–70.

Oflazer, K., Say, B., Hakkani-Tür, D. Z. and Tür, G. 2003. Building a Turkish treebank. In

Abeillé, A. (ed.) Treebanks: Building and Using Parsed Corpora, pp. 261–277. Dordrecht:

Kluwer.

Ratnaparkhi, A. 1997. A linear observed time statistical parser based on maximum entropy

models. In Proceedings of the Second Conference on Empirical Methods in Natural Language

Processing (EMNLP), pp. 1–10.

Sagae, K. and Lavie, A. 2005. A classifier-based parser with linear run-time complexity. In

Proceedings of the 9th International Workshop on Parsing Technologies (IWPT), pp. 125–

132.

Simov, K., Popova, G. and Osenova, P. 2002. HPSG-based syntactic treebank of Bulgarian

(BulTreeBank). In Wilson, A., Rayson, P. and McEnery, T. (eds), A Rainbow of Corpora:

Corpus Linguistics and the Languages of the World, pp. 135–142. Lincon-Europa.

Simmons, R. F. and Yu, Y.-H. 1992. The acquisition and use of context-dependent grammars

for English. Computational Linguistics 18, 391–418.

Skut, W., Krenn, B., Brants, T. and Uszkoreit, H. 1997. An annotation scheme for free

word order languages. In Proceedings of the Fifth Conference on Applied Natural Language

Processing (ANLP), Washington, D.C.

Tanev, H. and Mitkov, R. 2002. Shallow language processing architecture for Bulgarian. In

Proceedings of the 17th International Conference on Computational Linguistics (COLING),

pp. 995–1001.

Teleman, U. 1974. Manual för grammatisk beskrivning av talad och skriven svenska. Lund:

Studentlitteratur.

Telljohann, H., Hinrichs, E. W., Kübler, S. and Zinsmeister, H. 2005. Stylebook for the

Tübingen Treebank of Written German (TüBa-D/Z). Seminar für Sprachwissenschaft,

Universität Tübingen, Tübingen, Germany.

Titov, I. and Henderson, J. 2006. Porting statistical parsers with data-defined kernels.

In Proceedings of the Tenth Conference on Computational Natural Language Learning

(CoNLL), pp. 6–13.

Vapnik, V. N. 1995. The Nature of Statistical Learning Theory. Springer.

Veenstra, J. and Daelemans, W. 2000. A memory-based alternative for connectionist shift-

reduce parsing. Technical Report ILK-0012, University of Tilburg.

Voutilainen, A. 2001. Parsing Swedish. Extended Abstract for the 13th Nordic Conference of

Computational Linguistics, Uppsala University, May, 20-22, 2001.

Van der Wouden, T., Hoekstra, H., Moortgat, M., Renmans, B. and Schuurman, I. 2002.

Syntactic analysis in the spoken Dutch corpus. In Proceedings of the Third International

Conference on Language Resources and Evaluation, pp. 768–773.

Xue, N., Fei Xia, F.-D. and Palmer, M. 2005. The Penn Chinese Treebank: Phrase structure

annotation of a large corpus. Natural Language Engineering 11(2), 207–238.

Yamada, H. and Matsumoto, Y. 2003. Statistical dependency analysis with support vector

machines. In Proceedings of the 8th International Workshop on Parsing Technologies

(IWPT), pp. 195–206.

Zelle, J. M. and Mooney, R. J. 1993. Learning semantic grammars with constructive inductive

logic programming. In Proceedings of the Eleventh National Conference of the American

Association for Artificial Intelligence (AAAI), pp. 817–899.

