NLP FOR HISTORICAL (OR VERY MODERN) TEXT

Eva Pettersson
Department of Linguistics and Philology, Uppsala University
eva.pettersson@lingfil.uu.se

Language Technology: Research and Development
September 3, 2018
Aims and Motivation

• Historical text constitutes a rich source of information
• Not easily accessed
• Many texts are not digitized
• Lack of language technology tools to handle even digitized historical text
• Leads to time-consuming manual work for historians, philologists and other researchers in humanities
Example: Gender and Work

• Historians are interested in what men and women did for a living in the Early Modern Swedish Society (appr. 1550—1800).
• Information stored in database.
• Often expressed as verb phrases:
 - hugga ved: ‘chop wood’
 - sälja fisk: ‘sell fish’
 - tjäna som piga: ‘serve as a maid’
LT Solution for the GaW Project

1. Automatic extraction of verb phrases from historical text, based on tagging and parsing

2. Statistical methods for automatic ranking of the extracted phrases to display phrases describing work at the top of the results list
(Some) Challenges with Historical Text

• Different and inconsistent spelling
• Different vocabulary (often with Latin influences)
• Different (and inconsistent) morphology
• Longer sentences
• Inconsistent use of punctuation
• Different syntax and inconsistent word order
• Code-switching
• Substantial differences between texts from different time periods, genres, and authors
Spelling

- Both diachronic and synchronic spelling variance
- Lack of spelling conventions
- Spell the way words sound – different dialects
- Spellings of the pronoun mig (‘me/myself’) in the Swedish book of prayers Svenska tideboken (1525):

mig
migh
mik
mic
mich
mech
Spelling Variation Extreme

- The word **tiuvel** (Teufel) ‘devil’ occurs 733 times in Reference Corpus of Middle High German with 90 different spellings:

 dievel dieuel dieufal dieuual diu=quil diuvil divel divuel divuiil divvel dufel duoifel duovel duuel duuil duvel duvil dvofel dvuuil dwowel lieuel loufel teufel tevfel thufel thuuil tieful tiefil tieuel tie=uel tieuil tieuuel tieuuuil tievel ti=evel tie=vel tievil tifel tiofel tiuel tiufal tiufel tiufil tiufle tieuuil tiuofel tiuuel tiuuiil tiuval tiuvel tiuviil tivel tivfel tivil tivuel tivuil tivvel tivvil tiwvel tiwel tubel tubil tueuel tufel tuofil tuofel tuouil tuovel tuovil tuueil tuujl tuvel tuvil tvefel tvivel tvivil tvouel tvouil tvovel tvuel tvuil tvvel tvvil tyefel tyueuel tyevel tyfel
Vocabulary

- New words enter the language (e.g., technological development)
- Old words become less frequent or eventually non-existing
- Early New High German Words (1350–1650) not in use today*:

<table>
<thead>
<tr>
<th>Old Form</th>
<th>Modern</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>liberei/librari</td>
<td>Bibliothek</td>
<td>‘library’</td>
</tr>
<tr>
<td>triangel</td>
<td>Dreieck</td>
<td>‘triangle’</td>
</tr>
<tr>
<td>akkord</td>
<td>Vertrag</td>
<td>‘treaty’</td>
</tr>
</tbody>
</table>

* Salmons (2012): *A History of German – What the past reveals about today’s language*
Morphology

- Analogical levelling
- Shift in inflection from strong to weak paradigm

<table>
<thead>
<tr>
<th>Historical English</th>
<th>Modern English*</th>
</tr>
</thead>
<tbody>
<tr>
<td>old - elder - eldest</td>
<td>old - older - oldest</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Martin Luther (1483–1546)</th>
<th>Modern German*</th>
</tr>
</thead>
<tbody>
<tr>
<td>er bleyb/sie blieben</td>
<td>er blieb/sie blieben</td>
</tr>
<tr>
<td>er fand/sie funden</td>
<td>er fand/sie fanden</td>
</tr>
</tbody>
</table>

* Campbell (2013): *Historical linguistics*
Syntax

• Word order differences
• English transforming from synthetic language to (mostly) analytic language
• Synthetic languages
 – Highly inflected
 – Word endings mark grammatical functions
 – Less strict word order
• Analytic languages
 – Fewer word endings
 – Word order important clue for interpreting the grammatical functions of the words in a sentence
Sentence Boundaries and Sentence Length

• Not trivial to determine where one sentence ends and another sentence begins:
 – full stop succeeded by uppercase letter
 – full stop not succeeded by uppercase letter
 – slash, comma, semi-colon or other sign to mark sentence boundaries (with or without succeeding uppercase letter)
 – uppercase letter without preceding punctuation mark
 – no sentence boundary marker at all…

• Sentence boundary strategy may vary throughout the same document
How to Tag and Parse Historical Text

Two main approaches:

1. Train a tagger and/or a parser on historical data
 - Straightforward
 - Data sparseness issues

2. Spelling Normalisation
 - Automatically translate the original spelling to a more modern spelling, before performing tagging and parsing
 - Enables the use of NLP tools available for the modern language
 - Does not take syntactic differences and changes in vocabulary into account
Spelling Normalisation

• Rule-based Normalisation
• Levenshtein-based Normalisation*
 – Edit distance comparisons between the historical word form and a modern dictionary or corpus
• Memory-based Normalisation*
 – Parallel corpus of token pairs with historical spelling mapped to modern spelling
• SMT-based Normalisation*

* Evaluated and compared in Pettersson et al. (2014): *A Multilingual Evaluation of Three Spelling Normalisation Methods for Historical Text*
Rule-based Normalisation

- Hand-written normalisation rules based on known language changes and/or empirical findings

- Swedish examples:
 - drop of the letters -h and -f for the v sound
 - hvar → var 'was'
 - skerifva → skriva 'write'
 - deletion of repeated vowels
 - saak → sak 'thing'
 - substitution of phonologically similar letters
 - qvarn → kvarn 'mill'
 - slogz → slogs 'were fighting'
Levenshtein-based Normalisation

• Edit distance comparisons between the historical word form and word forms present in a modern dictionary or corpus

• The word form in the dictionary that is most similar to the historical word form is chosen, if the similarity is large enough

• Weighted edit distance, taking into account known spelling changes, could boost the performance
Levenshtein-based Normalisation

Edit distance comparisons between the historical word form and tokens present in a modern dictionary/corpus

ryghtful \rightarrow rightful
Levenshtein-based Normalisation

Edit distance comparisons between the historical word form and tokens present in a modern dictionary/corpus

ryghtful \rightarrow rightful
Levenshtein-based Normalisation

Edit distance comparisons between the historical word form and tokens present in a modern dictionary/corpus

\[\text{ryghtful} \quad \Rightarrow \quad \text{rightful} \]

1 substitution = Edit distance 1
Memory-based Normalisation

- Parallel training corpus of word form pairs with historical spelling mapped to modern spelling
- Most frequent equivalent is chosen ≈ dictionary lookup

- moost most
- noble noble
- & and
- worthiest worthiest
- lorde lords
- moost most
- rughtful rightful
- conseille council
SMT-based Normalisation

• Spelling normalisation treated as a translation task
• Standard Moses settings using GIZA++
• Translation based on character sequences rather than words and phrases*
• Previously performed for translation between closely related languages
• Only small parallel corpus needed for training due to fewer possible combinations of characters than of words

*Further described in Pettersson et al. (2013):
An SMT Approach to Automatic Annotation of Historical Data
I take the middle seat, which I dislike, but I am not really put out.
Jag tar mittplatsen, vilket jag inte tycker om, men det gör mig inte så mycket.
Normalisation Character Alignment
Very Modern Data

- The same methods that are used for NLP for historical text have also been used for very modern text, such as Twitter data.
- Spelling normalisation useful before tagging/parsing.

seein that *ad* makes me wanna listen to dat song rite now

Example from Clark & Araki (2011)
Some Suggestions for Projects

1. Spelling Normalisation
 - Aim:
 • developing your own system for spelling normalisation of historical text, or modern data such as Twitter data
 - Possible methods:
 • manually or automatically defined re-write rules
 • (Levenshtein) edit distance comparisons
 • phonetic similarity
 • statistical machine translation techniques
 • neural network techniques
 • …or any method you can come up with!
 (including combinations of different approaches)
2. Tagging and Parsing

- **Aim:**
 - developing methods for tagging and/or parsing of historical text, or modern data such as Twitter data

- **Challenge:**
 - take into account the special characteristics of historical/Twitter text, such as orthographic and syntactic variance
Some Suggestions for Projects

3. Trends in Spelling and Grammar Over Time
 - Aim:
 • developing methods for automatically identifying and analysing systematic differences in spelling and/or syntax between texts written in different time periods
 - a successful system of this kind would be very useful for e.g. historical linguists interested in language change
Last Year’s Projects

Normalisation
• An Evaluation of Different Approaches to Spelling Normalization of English Historical Text
• Character-based SMT and NMT for Historical Text Normalization
• An Evaluation of NMT Models on Historical Spelling Normalization (COLING paper)

Tagging Historical Text
• Evaluating Two Modern POS Taggers on Historical Novels by Daniel Defoe

NLP for Twitter
• A Pipeline for Twitter Lexical Normalization

Machine Translation
• Translating Middle Egyptian to Modern English with NMT

Other
• Ranking Relevant Verb Phrases Extracted from Historical Text