Language Technology: Research and Development

Language Technology Research and Development

Joakim Nivre

Uppsala University
Department of Linguistics and Philology
joakim.nivre@lingfil.uu.se
The Name of the Game

Computational Linguistics (CL)

Natural Language Processing (NLP)

[Human] Language Technology ([H]LT)

[Natural] Language Engineering ([N]LE)
The Name of the Game

Computational Linguistics (CL)
- Study of natural language from a computational perspective

Natural Language Processing (NLP)
- Study of computational models for processing natural language

[Human] Language Technology ([H]LT)
- Development and evaluation of applications based on CL/NLP

[Natural] Language Engineering ([N]LE)
- Same as [H]LT but obsolete?
An Interdisciplinary Field

Linguistics
 ▶ Theory, language description, data analysis (annotation)

Computer science
 ▶ Theory, data models, algorithms, software technology

Mathematics
 ▶ Theory, abstract models, analytic and numerical methods

Statistics
 ▶ Theory, statistical learning and inference, data analysis
Linguistics

- Structuralist linguistics (1915–1960)
 - Language as a network of relations (phonology, morphology)
 - Inductive discovery procedures
- Generative grammar (1960–)
 - Language as a generative system (syntax)
 - Deductive formal systems (formal language theory)
 - NLP systems based on linguistic theories
Linguistics

- Recent trends (1990–):
 - Language processing (psycholinguistics, neurolinguistics)
 - Strong empiricist movement (corpus linguistics)
 - NLP systems based on linguistically annotated data

- Theoretical and computational linguistics have diverged

Interaction between Linguistics and Computational Linguistics: Virtuous, Vicious or Vacuous? (Workshop at EACL 2009)
Computer Science

- Theoretical computer science
 - Turing machines and computability (Church-Turing thesis)
 - Algorithm and complexity theory (cf. formal language theory)
- Artificial Intelligence
 - Early work on symbolic logic-based systems (GOFAI)
 - Trend towards machine learning and sub-symbolic systems
 - Parallel development in natural language processing
Mathematics

- Mathematical model
 - Description of real-world system using mathematical concepts
 - Formed by abstraction over real-world system
 - Provide computable solutions to problems
 - Solutions interpreted and evaluated in the real world
- Mathematical modeling fundamental to (many) science(s)
Mathematics

- Real-world language technology problem:
 - Syntactic parsing: sentence \Rightarrow syntactic structure
 - No precise definition of relation from inputs to outputs
 - At best annotated data samples (treebanks)

- Mathematical model:
 - Probabilistic context-free grammar G
 \[
 T^* = \arg\max_{T: \text{yield}(S) = T} P_G(T)
 \]
 - T^* can be computed exactly in the model
 - T^* may or may not give a solution to the real problem

- How do we determine whether a model is good or bad?
Statistics

Probability theory
- Mathematical theory of uncertainty

Descriptive statistics
- Methods for summarizing information in large data sets

Statistical inference
- Methods for generalizing from samples to populations
Statistics

- Probability theory
 - Framework for mathematical modeling
 - Standard models: HMM, PCFG, Naive Bayes
- Descriptive statistics
 - Summary statistics in exploratory empirical studies
 - Evaluation metrics in experiments (accuracy, precision, recall)
- Statistical inference
 - Estimation of model parameters (machine learning)
 - Hypothesis testing about systems (evaluation)
Language Technology R&D

Sections in *Transactions of the ACL (TACL)*:

- Theoretical research
- Empirical research
- Applications and tools
- Resources and evaluation
Language Technology R&D

Sections in Transactions of the ACL (TACL):

- Theoretical research – deductive approach
- Empirical research – inductive approach
- Applications and tools – design and construction
- Resources and evaluation – data and method
Theoretical Research

- Formal theories of language and computation
- Studies of models and algorithms in themselves
- Claims justified by formal argument (deductive proofs)
- Often implicit relation to real-world problems and data
Theoretical Research

Efficient Parsing for Head-Split Dependency Trees.
Transactions of the Association for Computational Linguistics 1, 267–278.

- Contribution:
 - Parsing algorithms for non-projective dependency trees
 - Added constraints reduce complexity from $O(n^7)$ to $O(n^5)$

- Approach:
 - Formal description of algorithms
 - Proofs of correctness and complexity
 - No implementation or experiments
 - Empirical analysis of coverage after adding constraints
Empirical Research

- Empirical studies of language and computation
- Studies of models and algorithms applied to data
- Claims justified by experiments and statistical inference
- Explicit relation to real-world problems and data
Empirical Research

▶ Contribution:
 ▶ Latent variable CRFs for unsupervised part-of-speech tagging
 ▶ Learning from both type and token constraints

▶ Approach:
 ▶ Formal description of mathematical model
 ▶ Statistical inference for learning and evaluation
 ▶ Multilingual data sets used in experiments
Applications and Tools

- Design and construction of LT systems
- Primarily end-to-end applications (user-oriented)
- Claims often justified by proven experience
- May include experimental evaluation or user study
Applications and Tools

- **Contribution:**
 - In-depth description of design and application development
 - Extensive evaluation in the context of application (real users)

- **Approach:**
 - Case study – concrete instance in context
 - Semi-formal system description (flowcharts, examples)
 - Statistical inference for evaluation
Resources and Evaluation

Resources
- Collection and annotation of data (for learning and evaluation)
- Design and construction of knowledge bases (grammars, lexica)

Evaluation
- Protocols for (empirical) evaluation
 - Intrinsic evaluation – task performance
 - Extrinsic evaluation – effect on end-to-end application
- Methodological considerations:
 - Selection of test data (sampling)
 - Evaluation metrics (intrinsic, extrinsic)
 - Significance testing (statistical inference)
Creating a Live, Public Short Message Service Corpus:

- Contribution:
 - Free SMS corpus in English and Chinese (> 70,000 msgs)
 - Discussion of methodological considerations

- Approach:
 - Crowdsourcing using mobile phone apps
 - Automatic anonymization using regular expressions
 - Linguistic annotation as future plans
Language Technology as a Science

- Scientific reasoning
 - Deduction common in theoretical research
 - Induction underlies machine learning and statistical evaluation
 - Inference to the best explanation in experimental studies

- Scientific explanation
 - Explanations based on general laws are rare
 - Explanations based on statistical generalizations are the norm

- Reproducibility/replicability
 - Important in theory but problematic in practice
 - Recent initiatives to publish data and software with papers

Language Technology as a Science

- The “empirical revolution” in language technology
 - Before 1990: Rationalist approaches and qualitative evaluation
 - Today: Empirical approaches and quantitative evaluation
- What happened?
 - Paradigm shift in Kuhn’s sense?
 - Just another swing of the pendulum?
 - Language technology becoming a mature science?
Ethics in Language Technology

- Increasing attention in the (larger) community
- Some issues raised by Hovy and Spruit:
 - Exclusion – data bias
 - Overgeneralization – modeling bias
 - Dual-use problems
- First Workshop on Ethics in NLP held in 2017